A347487
Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 4.
Original entry on oeis.org
1, 1, 5, 1, 21, 105, 1, 85, 357, 1785, 8925, 1, 341, 5797, 28985, 121737, 608685, 3043425, 1, 1365, 93093, 376805, 465465, 7912905, 33234201, 39564525, 166171005, 830855025, 4154275125, 1, 5461, 1490853, 24208613, 7454265, 508380873, 2057732105, 8642474841
Offset: 1
The number of subspace chains 0 < V_1 < V_2 < (F_4)^3 is 105 = T(3, (1, 1, 1)). There are 21 = A022168(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 5 = A022168(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
k: 1 2 3 4 5 6 7
--------------------------------------
n=1: 1
n=2: 1 5
n=3: 1 21 105
n=4: 1 85 357 1785 8925
n=5: 1 341 5795 28985 121737 608685 3043425
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
A347971
Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_4)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 12, 31, 12, 1, 1, 19, 111, 111, 19, 1, 1, 29, 361, 964, 361, 29, 1, 1, 41, 1068, 8042, 8042, 1068, 41, 1, 1, 56, 2954, 64674, 205065, 64674, 2954, 56, 1, 1, 75, 7681, 492387, 5402621, 5402621, 492387, 7681, 75, 1, 1, 97, 18880, 3507681, 137287827
Offset: 0
Triangle begins:
k: 0 1 2 3 4 5 6
-------------------------------
n=0: 1
n=1: 1 1
n=2: 1 3 1
n=3: 1 7 7 1
n=4: 1 12 31 12 1
n=5: 1 19 111 111 19 1
n=6: 1 29 361 964 361 29 1
There are 5 = A022168(2, 1) one-dimensional subspaces in (F_4)^2, namely, those generated by vectors (0, 1), (1, 0), (1, 1), (1, x), and (1, x + 1), where F_4 = F_2[x] / (x^2 + x + 1). The coordinate swap identifies the first two on the one hand and the last two on the other, while <(1, 1)> is invariant. Hence, T(2, 1) = 3.
- Álvar Ibeas, Entries up to T(14, 6)
- H. Fripertinger, Isometry classes of codes
- H. Fripertinger, Number of the isometry classes of all quaternary (n,k)-codes
- Álvar Ibeas, Column k=1 up to n=100
- Álvar Ibeas, Column k=2 up to n=100
- Álvar Ibeas, Column k=3 up to n=100
- Álvar Ibeas, Column k=4 up to n=100
- Álvar Ibeas, Column k=5 up to n=100
- Álvar Ibeas, Column k=6 up to n=100
A383755
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 3^(n-k) * T(n-1,k-1) + 4^k * T(n-1,k) with T(n,k) = n^k if n*k=0.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 37, 37, 1, 1, 175, 925, 175, 1, 1, 781, 19525, 19525, 781, 1, 1, 3367, 375661, 1776775, 375661, 3367, 1, 1, 14197, 6828757, 144142141, 144142141, 6828757, 14197, 1, 1, 58975, 119609725, 10884484975, 48575901517, 10884484975, 119609725, 58975, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 7, 1;
1, 37, 37, 1;
1, 175, 925, 175, 1;
1, 781, 19525, 19525, 781, 1;
1, 3367, 375661, 1776775, 375661, 3367, 1;
...
-
T(n, k) = if(n*k==0, n^k, 3^(n-k)*T(n-1, k-1)+4^k*T(n-1, k));
-
def a_row(n): return [3^(k*(n-k))*q_binomial(n, k, 4/3) for k in (0..n)]
for n in (0..8): print(a_row(n))
A156914
Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0
Square array begins as:
1, 1, 1, 1, ...;
2, 3, 4, 5, ...;
6, 35, 130, 357, ...;
20, 1395, 33880, 376805, ...;
70, 200787, 75913222, 6221613541, ...;
252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
1;
1, 2;
1, 3, 6;
1, 4, 35, 20;
1, 5, 130, 1395, 70;
1, 6, 357, 33880, 200787, 252;
1, 7, 806, 376805, 75913222, 109221651, 924;
1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
-
QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
T:= func< n,k | QBinomial(2*n, n, k+1) >;
[T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
-
T[n_, k_]:= QBinomial[2*n, n, k+1];
Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
-
def A156914(n, k): return q_binomial(2*n, n, k+1)
flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021
A173583
Triangle T(n, k, q) = q-binomial(n, k, q^2), for q = 5, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 26, 1, 1, 651, 651, 1, 1, 16276, 407526, 16276, 1, 1, 406901, 254720026, 254720026, 406901, 1, 1, 10172526, 159200423151, 3980255126276, 159200423151, 10172526, 1, 1, 254313151, 99500274641901, 62191645548485651, 62191645548485651, 99500274641901, 254313151, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 26, 1;
1, 651, 651, 1;
1, 16276, 407526, 16276, 1;
1, 406901, 254720026, 254720026, 406901, 1;
1, 10172526, 159200423151, 3980255126276, 159200423151, 10172526, 1;
-
q:=5;; [q^(k*(n-k))*GaussianBinomial(n, k, q): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 22 2021
-
(* First program *)
c[n_, q_]:= Product[(1 -q^(2*j))/(1-q), {j,1,n}];
T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n, k, 5], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
Table[QBinomial[n,k,5^2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2021 *)
T[n_, k_, p_]:= T[n, k, p] = If[k==0 || k==n, 1, T[n-1, k-1, p] + p^k*T[n-1, k, q]]; Table[T[n, k, 25], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2021 *)
-
flatten([[q_binomial(n, k, 5^2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2021
A211877
Number of involutions in GL(n,4).
Original entry on oeis.org
1, 21, 673, 102273, 47663617, 110981851137, 815432848809985, 30052835284679819265, 3519512226295269640765441, 2069751512310185039905834926081, 3874510079394593253089862950754189313, 36431456010689490638771956423547489198538753
Offset: 1
-
A211877 := proc(n)
add( 4^(k*(n-k))*A022168(n,k),k=1..n) ;
end proc: # R. J. Mathar, Apr 26 2013
-
Sum[q^(k (n - k)) QBinomial[n, k, q], {k, 1, n}]
Comments