cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A347487 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 4.

Original entry on oeis.org

1, 1, 5, 1, 21, 105, 1, 85, 357, 1785, 8925, 1, 341, 5797, 28985, 121737, 608685, 3043425, 1, 1365, 93093, 376805, 465465, 7912905, 33234201, 39564525, 166171005, 830855025, 4154275125, 1, 5461, 1490853, 24208613, 7454265, 508380873, 2057732105, 8642474841
Offset: 1

Views

Author

Álvar Ibeas, Sep 03 2021

Keywords

Comments

Abuse of notation: we write T(n, L) for T(n, k), where L is the k-th partition of n in A-St order.
For any permutation (e_1,...,e_r) of the parts of L, T(n, L) is the number of chains of subspaces 0 < V_1 < ··· < V_r = (F_4)^n with dimension increments (e_1,...,e_r).

Examples

			The number of subspace chains 0 < V_1 < V_2 < (F_4)^3 is 105 = T(3, (1, 1, 1)). There are 21 = A022168(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 5 = A022168(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
  k:  1   2    3     4      5      6       7
      --------------------------------------
n=1:  1
n=2:  1   5
n=3:  1  21  105
n=4:  1  85  357  1785   8925
n=5:  1 341 5795 28985 121737 608685 3043425
		

References

  • R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.

Crossrefs

Cf. A036038 (q = 1), A022168, A015002 (last entry in each row).

Formula

T(n, (n)) = 1. T(n, L) = A022168(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.

A347971 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_4)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 12, 31, 12, 1, 1, 19, 111, 111, 19, 1, 1, 29, 361, 964, 361, 29, 1, 1, 41, 1068, 8042, 8042, 1068, 41, 1, 1, 56, 2954, 64674, 205065, 64674, 2954, 56, 1, 1, 75, 7681, 492387, 5402621, 5402621, 492387, 7681, 75, 1, 1, 97, 18880, 3507681, 137287827
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
Regarding the formula for column k = 1, note that A241926(q - 1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component.

Examples

			Triangle begins:
  k:  0    1    2    3    4    5    6
      -------------------------------
n=0:  1
n=1:  1    1
n=2:  1    3    1
n=3:  1    7    7    1
n=4:  1   12   31   12    1
n=5:  1   19  111  111   19    1
n=6:  1   29  361  964  361   29    1
There are 5 = A022168(2, 1) one-dimensional subspaces in (F_4)^2, namely, those generated by vectors (0, 1), (1, 0), (1, 1), (1, x), and (1, x + 1), where F_4 = F_2[x] / (x^2 + x + 1). The coordinate swap identifies the first two on the one hand and the last two on the other, while <(1, 1)> is invariant. Hence, T(2, 1) = 3.
		

Crossrefs

Formula

T(n, 1) = T(n - 1, 1) + A007997(n + 5).

A383755 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 3^(n-k) * T(n-1,k-1) + 4^k * T(n-1,k) with T(n,k) = n^k if n*k=0.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 37, 37, 1, 1, 175, 925, 175, 1, 1, 781, 19525, 19525, 781, 1, 1, 3367, 375661, 1776775, 375661, 3367, 1, 1, 14197, 6828757, 144142141, 144142141, 6828757, 14197, 1, 1, 58975, 119609725, 10884484975, 48575901517, 10884484975, 119609725, 58975, 1
Offset: 0

Views

Author

Seiichi Manyama, May 09 2025

Keywords

Examples

			Triangle begins:
  1;
  1,    1;
  1,    7,      1;
  1,   37,     37,       1;
  1,  175,    925,     175,      1;
  1,  781,  19525,   19525,    781,    1;
  1, 3367, 375661, 1776775, 375661, 3367, 1;
  ...
		

Crossrefs

Columns k=0..3 give A000012, A005061, A383756(n-2), A383757(n-3).
Cf. A022168.

Programs

  • PARI
    T(n, k) = if(n*k==0, n^k, 3^(n-k)*T(n-1, k-1)+4^k*T(n-1, k));
    
  • Sage
    def a_row(n): return [3^(k*(n-k))*q_binomial(n, k, 4/3) for k in (0..n)]
    for n in (0..8): print(a_row(n))

Formula

T(n,k) = 3^(k*(n-k)) * q-binomial(n, k, 4/3).
T(n,k) = 4^(n-k) * T(n-1,k-1) + 3^k * T(n-1,k).
T(n,k) = T(n,n-k).
G.f. of column k: x^k * exp( Sum_{j>=1} f((k+1)*j)/f(j) * x^j/j ), where f(j) = 4^j - 3^j.

A156914 Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0

Views

Author

Roger L. Bagula, Feb 18 2009

Keywords

Examples

			Square array begins as:
    1,         1,             1,                1, ...;
    2,         3,             4,                5, ...;
    6,        35,           130,              357, ...;
   20,      1395,         33880,           376805, ...;
   70,    200787,      75913222,       6221613541, ...;
  252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
  1;
  1, 2;
  1, 3,    6;
  1, 4,   35,      20;
  1, 5,  130,    1395,         70;
  1, 6,  357,   33880,     200787,           252;
  1, 7,  806,  376805,   75913222,     109221651,          924;
  1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
		

Crossrefs

Programs

  • Magma
    QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
    T:= func< n,k | QBinomial(2*n, n, k+1) >;
    [T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
    
  • Mathematica
    T[n_, k_]:= QBinomial[2*n, n, k+1];
    Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
  • Sage
    def A156914(n, k): return q_binomial(2*n, n, k+1)
    flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021

Formula

T(n, k) = q-binomial(2*n, n, k+1), where q-binomial(n, k, q) = Product_{j=0..k-1} ( (1-q^(n-j))/(1-q^(j+1)) ), read by antidiagonals. - G. C. Greubel, Jun 14 2021

Extensions

Edited by G. C. Greubel, Jun 14 2021

A173583 Triangle T(n, k, q) = q-binomial(n, k, q^2), for q = 5, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 26, 1, 1, 651, 651, 1, 1, 16276, 407526, 16276, 1, 1, 406901, 254720026, 254720026, 406901, 1, 1, 10172526, 159200423151, 3980255126276, 159200423151, 10172526, 1, 1, 254313151, 99500274641901, 62191645548485651, 62191645548485651, 99500274641901, 254313151, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 22 2010

Keywords

Comments

Row sums are: 1, 2, 28, 1304, 440080, 510253856, 4298676317632, 124582292154881408, ...

Examples

			Triangle begins as:
  1;
  1,        1;
  1,       26,            1;
  1,      651,          651,             1;
  1,    16276,       407526,         16276,            1;
  1,   406901,    254720026,     254720026,       406901,        1;
  1, 10172526, 159200423151, 3980255126276, 159200423151, 10172526, 1;
		

Crossrefs

Cf. A000012 (q=0), A007318 (q=1), A022168 (q=2), A022173 (q=3), A022180 (q=4), A173583 (q=5).

Programs

  • Magma
    q:=5;; [q^(k*(n-k))*GaussianBinomial(n, k, q): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 22 2021
  • Mathematica
    (* First program *)
    c[n_, q_]:= Product[(1 -q^(2*j))/(1-q), {j,1,n}];
    T[n_, k_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
    Table[T[n, k, 5], {n,0,12}, {k,0,n}]//Flatten
    (* Second program *)
    Table[QBinomial[n,k,5^2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2021 *)
    T[n_, k_, p_]:= T[n, k, p] = If[k==0 || k==n, 1, T[n-1, k-1, p] + p^k*T[n-1, k, q]];  Table[T[n, k, 25], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 22 2021 *)
  • Sage
    flatten([[q_binomial(n, k, 5^2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2021
    

Formula

T(n, k, q) = c(n, q)/(c(k, q)*c(n-k, q)) where c(n, q) = Product_{j=1..n} (1 -q^(2*j))/(1-q) for q = 5.
From G. C. Greubel, Feb 22 2021: (Start)
T(n, k, q) = q-binomial(n, k, q^2), for q = 5.
T(n, k) = T(n-1, k-1) + p^k * T(n-1, k), with p = 25 (as a number triangle). (End)

Extensions

Edited by G. C. Greubel, Feb 22 2021

A211877 Number of involutions in GL(n,4).

Original entry on oeis.org

1, 21, 673, 102273, 47663617, 110981851137, 815432848809985, 30052835284679819265, 3519512226295269640765441, 2069751512310185039905834926081, 3874510079394593253089862950754189313, 36431456010689490638771956423547489198538753
Offset: 1

Views

Author

Alexander Gruber, Feb 12 2013

Keywords

Programs

  • Maple
    A211877 := proc(n)
        add( 4^(k*(n-k))*A022168(n,k),k=1..n) ;
    end proc: # R. J. Mathar, Apr 26 2013
  • Mathematica
    Sum[q^(k (n - k)) QBinomial[n, k, q], {k, 1, n}]
Previous Showing 21-26 of 26 results.