A015118
Triangle of q-binomial coefficients for q=-8.
Original entry on oeis.org
1, 1, 1, 1, -7, 1, 1, 57, 57, 1, 1, -455, 3705, -455, 1, 1, 3641, 236665, 236665, 3641, 1, 1, -29127, 15150201, -120935815, 15150201, -29127, 1, 1, 233017, 969583737, 61934287481, 61934287481, 969583737, 233017, 1, 1, -1864135, 62053592185
Offset: 0
Cf. analog triangles for negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -8], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015118(n, k, q=-8)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015121
Triangle of q-binomial coefficients for q=-9.
Original entry on oeis.org
1, 1, 1, 1, -8, 1, 1, 73, 73, 1, 1, -656, 5986, -656, 1, 1, 5905, 484210, 484210, 5905, 1, 1, -53144, 39226915, -352504880, 39226915, -53144, 1, 1, 478297, 3177326971, 257015284435, 257015284435, 3177326971, 478297, 1, 1, -4304672, 257363962948
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -9], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015121(n, k, q=-9)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015123
Triangle of q-binomial coefficients for q=-10.
Original entry on oeis.org
1, 1, 1, 1, -9, 1, 1, 91, 91, 1, 1, -909, 9191, -909, 1, 1, 9091, 918191, 918191, 9091, 1, 1, -90909, 91828191, -917272809, 91828191, -90909, 1, 1, 909091, 9182728191, 917364637191, 917364637191, 9182728191, 909091, 1, 1, -9090909, 918273728191
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -10], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015123(n, k, q=-10)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015124
Triangle of q-binomial coefficients for q=-11.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, 111, 111, 1, 1, -1220, 13542, -1220, 1, 1, 13421, 1637362, 1637362, 13421, 1, 1, -147630, 198134223, -2177691460, 198134223, -147630, 1, 1, 1623931, 23974093353, 2898705467483, 2898705467483, 23974093353, 1623931, 1, 1
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. - M. F. Hasler, Nov 05 2012
-
T015124(n, k, q=-11)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015125
Triangle of q-binomial coefficients for q=-12.
Original entry on oeis.org
1, 1, 1, 1, -11, 1, 1, 133, 133, 1, 1, -1595, 19285, -1595, 1, 1, 19141, 2775445, 2775445, 19141, 1, 1, -229691, 399683221, -4793193515, 399683221, -229691, 1, 1, 2756293, 57554154133, 8283038077141, 8283038077141, 57554154133, 2756293, 1, 1
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
T015125(n, k, q=-12)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015132
Triangle of (Gaussian) q-binomial coefficients for q=-14.
Original entry on oeis.org
1, 1, 1, 1, -13, 1, 1, 183, 183, 1, 1, -2561, 36051, -2561, 1, 1, 35855, 7063435, 7063435, 35855, 1, 1, -501969, 1384469115, -19375002205, 1384469115, -501969, 1, 1, 7027567, 271355444571, 53166390519635, 53166390519635, 271355444571
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
T015132(n, k, q=-14)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A006119
Sum of Gaussian binomial coefficients [ n,k ] for q=5.
Original entry on oeis.org
1, 2, 8, 64, 1120, 42176, 3583232, 666124288, 281268665344, 260766671206400, 549874114073747456, 2547649010961476288512, 26854416724405008878829568
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- Vincenzo Librandi, Table of n, a(n) for n = 0..75
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
-
[n le 2 select n else 2*Self(n-1)+(5^(n-2)-1)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 13 2016
-
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(5^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
Table[Sum[QBinomial[n, k, 5], {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2016 *)
A347488
Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 5.
Original entry on oeis.org
1, 1, 6, 1, 31, 186, 1, 156, 806, 4836, 29016, 1, 781, 20306, 121836, 629486, 3776916, 22661496, 1, 3906, 508431, 2558556, 3050586, 79315236, 409795386, 475891416, 2458772316, 14752633896, 88515803376, 1, 19531, 12714681, 320327931, 76288086
Offset: 1
The number of subspace chains 0 < V_1 < V_2 < (F_5)^3 is 186 = T(3, (1, 1, 1)). There are 31 = A022169(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 6 = A022169(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
k: 1 2 3 4 5
-----------------------
n=1: 1
n=2: 1 6
n=3: 1 31 186
n=4: 1 156 806 4836 29016
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
A347972
Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_5)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 19, 56, 19, 1, 1, 33, 289, 289, 33, 1, 1, 55, 1358, 4836, 1358, 55, 1, 1, 85, 5771, 80605, 80605, 5771, 85, 1, 1, 128, 22594, 1271870, 5525686, 1271870, 22594, 128, 1, 1, 183, 81802, 18478460, 372302962, 372302962, 18478460, 81802, 183, 1
Offset: 0
Triangle begins:
k: 0 1 2 3 4 5 6
-------------------------------
n=0: 1
n=1: 1 1
n=2: 1 4 1
n=3: 1 9 9 1
n=4: 1 19 56 19 1
n=5: 1 33 289 289 33 1
n=6: 1 55 1358 4836 1358 55 1
There are 6 = A022169(2, 1) one-dimensional subspaces in (F_5)^2. By coordinate swap, <(0, 1)> is identified with <(1, 0)> and <(1, 2)> with <(1, 3)>, while <(1, 1)> and <(1, 4)> rest invariant. Hence, T(2, 1) = 4.
A156914
Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0
Square array begins as:
1, 1, 1, 1, ...;
2, 3, 4, 5, ...;
6, 35, 130, 357, ...;
20, 1395, 33880, 376805, ...;
70, 200787, 75913222, 6221613541, ...;
252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
1;
1, 2;
1, 3, 6;
1, 4, 35, 20;
1, 5, 130, 1395, 70;
1, 6, 357, 33880, 200787, 252;
1, 7, 806, 376805, 75913222, 109221651, 924;
1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
-
QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
T:= func< n,k | QBinomial(2*n, n, k+1) >;
[T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
-
T[n_, k_]:= QBinomial[2*n, n, k+1];
Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
-
def A156914(n, k): return q_binomial(2*n, n, k+1)
flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021
Comments