A015121
Triangle of q-binomial coefficients for q=-9.
Original entry on oeis.org
1, 1, 1, 1, -8, 1, 1, 73, 73, 1, 1, -656, 5986, -656, 1, 1, 5905, 484210, 484210, 5905, 1, 1, -53144, 39226915, -352504880, 39226915, -53144, 1, 1, 478297, 3177326971, 257015284435, 257015284435, 3177326971, 478297, 1, 1, -4304672, 257363962948
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -9], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015121(n, k, q=-9)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015123
Triangle of q-binomial coefficients for q=-10.
Original entry on oeis.org
1, 1, 1, 1, -9, 1, 1, 91, 91, 1, 1, -909, 9191, -909, 1, 1, 9091, 918191, 918191, 9091, 1, 1, -90909, 91828191, -917272809, 91828191, -90909, 1, 1, 909091, 9182728191, 917364637191, 917364637191, 9182728191, 909091, 1, 1, -9090909, 918273728191
Offset: 0
Cf. analog triangles for other q:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
Table[QBinomial[n, k, -10], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
T015123(n, k, q=-10)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015124
Triangle of q-binomial coefficients for q=-11.
Original entry on oeis.org
1, 1, 1, 1, -10, 1, 1, 111, 111, 1, 1, -1220, 13542, -1220, 1, 1, 13421, 1637362, 1637362, 13421, 1, 1, -147630, 198134223, -2177691460, 198134223, -147630, 1, 1, 1623931, 23974093353, 2898705467483, 2898705467483, 23974093353, 1623931, 1, 1
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015125 (q=-12),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. - M. F. Hasler, Nov 05 2012
-
T015124(n, k, q=-11)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015125
Triangle of q-binomial coefficients for q=-12.
Original entry on oeis.org
1, 1, 1, 1, -11, 1, 1, 133, 133, 1, 1, -1595, 19285, -1595, 1, 1, 19141, 2775445, 2775445, 19141, 1, 1, -229691, 399683221, -4793193515, 399683221, -229691, 1, 1, 2756293, 57554154133, 8283038077141, 8283038077141, 57554154133, 2756293, 1, 1
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015129 (q=-13),
A015132 (q=-14),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
T015125(n, k, q=-12)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015132
Triangle of (Gaussian) q-binomial coefficients for q=-14.
Original entry on oeis.org
1, 1, 1, 1, -13, 1, 1, 183, 183, 1, 1, -2561, 36051, -2561, 1, 1, 35855, 7063435, 7063435, 35855, 1, 1, -501969, 1384469115, -19375002205, 1384469115, -501969, 1, 1, 7027567, 271355444571, 53166390519635, 53166390519635, 271355444571
Offset: 0
Cf. analog triangles for other negative q=-2,...,-15:
A015109 (q=-2),
A015110 (q=-3),
A015112 (q=-4),
A015113 (q=-5),
A015116 (q=-6),
A015117 (q=-7),
A015118 (q=-8),
A015121 (q=-9),
A015123 (q=-10),
A015124 (q=-11),
A015125 (q=-12),
A015129 (q=-13),
A015133 (q=-15). -
M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24:
A022166 (q=2),
A022167 (q=3),
A022168,
A022169,
A022170,
A022171,
A022172,
A022173,
A022174 (q=10),
A022175,
A022176,
A022177,
A022178,
A022179,
A022180,
A022181,
A022182,
A022183,
A022184 (q=20),
A022185,
A022186,
A022187,
A022188. -
M. F. Hasler, Nov 05 2012
-
T015132(n, k, q=-14)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012
A015197
Sum of Gaussian binomial coefficients for q=11.
Original entry on oeis.org
1, 2, 14, 268, 19156, 3961832, 3092997464, 7024809092848, 60287817008722576, 1505950784990730735392, 142158530752430089391520224, 39060769254069395008311334483648, 40559566021977397260316290099710383936
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Total/@Table[QBinomial[n, m, 11], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *)
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(11^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
A347492
Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 11.
Original entry on oeis.org
1, 1, 12, 1, 133, 1596, 1, 1464, 16226, 194712, 2336544, 1, 16105, 1964810, 23577720, 261319730, 3135836760, 37630041120, 1, 177156, 237758115, 2617126920, 2853097380, 348077880360, 3857863173990, 4176934564320, 46294358087880, 555532297054560, 6666387564654720, 1, 1948717
Offset: 1
The number of subspace chains 0 < V_1 < V_2 < (F_11)^3 is 1596 = T(3, (1, 1, 1)). There are 133 = A022175(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 12 = A022175(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
k: 1 2 3 4 5
---------------------------
n=1: 1
n=2: 1 12
n=3: 1 133 1596
n=4: 1 1464 16226 194712 2336544
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
A156914
Square array T(n, k) = q-binomial(2*n, n, k+1), read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 35, 20, 1, 5, 130, 1395, 70, 1, 6, 357, 33880, 200787, 252, 1, 7, 806, 376805, 75913222, 109221651, 924, 1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432, 1, 9, 2850, 12485095, 200525284806, 1634141006295525, 267598665689058580, 1919209135381395, 12870
Offset: 0
Square array begins as:
1, 1, 1, 1, ...;
2, 3, 4, 5, ...;
6, 35, 130, 357, ...;
20, 1395, 33880, 376805, ...;
70, 200787, 75913222, 6221613541, ...;
252, 109221651, 1506472167928, 1634141006295525, ...;
Antidiagonal triangle begins as:
1;
1, 2;
1, 3, 6;
1, 4, 35, 20;
1, 5, 130, 1395, 70;
1, 6, 357, 33880, 200787, 252;
1, 7, 806, 376805, 75913222, 109221651, 924;
1, 8, 1591, 2558556, 6221613541, 1506472167928, 230674393235, 3432;
-
QBinomial:= func< n,k,q | q eq 1 select Binomial(n, k) else k eq 0 select 1 else (&*[ (1-q^(n-j+1))/(1-q^j): j in [1..k] ]) >;
T:= func< n,k | QBinomial(2*n, n, k+1) >;
[T(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2021
-
T[n_, k_]:= QBinomial[2*n, n, k+1];
Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2021 *)
-
def A156914(n, k): return q_binomial(2*n, n, k+1)
flatten([[A156914(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2021
Comments