cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A211013 Second 13-gonal numbers: a(n) = n*(11*n+9)/2.

Original entry on oeis.org

0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 31... and the line from 10, in the direction 10, 63,..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313.

Crossrefs

Bisection of A195313.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, this sequence, A211014.
Cf. A051865.

Programs

Formula

G.f.: x*(10+x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 10, a(2) = 31. - Philippe Deléham, Mar 27 2013
a(n) = A051865(n) + 9n = A180223(n) + 8n = A022268(n) + 5n = A022269(n) + 4n = A152740(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11n+9). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(20 + 11*x)*exp(x)/2. - G. C. Greubel, Jul 04 2019

A218530 Partial sums of floor(n/11).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008729.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
		

Crossrefs

Formula

a(11n) = A051865(n).
a(11n+1) = A180223(n).
a(11n+4) = A022268(n).
a(11n+5) = A022269(n).
a(11n+6) = A254963(n)
a(11n+9) = A211013(n).
a(11n+10) = A152740(n).
G.f.: x^11/((1-x)^2*(1-x^11)).

A008729 Molien series for 3-dimensional group [2, n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
The first six columns are A051865, A180223, A022268, A022269, A211013, A152740.
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10,11,13,15];; for n in [14..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-11]-2*a[n-12]+a[n-13]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^11)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    g:= 1/((1-x)^2*(1-x^11)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^11)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^11))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^11))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+11} floor(j/11).
a(n-11) = (1/2)*floor(n/11)*(2*n - 9 - 11*floor(n/11)). (End)
a(n) = A218530(n+11). - Philippe Deléham, Apr 03 2013
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-11) - 2*a(n-12) + a(n-13) for n > 12.
G.f.: 1/(1 - 2*x + x^2 - x^11 + 2*x^12 - x^13) = 1/((1-x)^3 *(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010
Previous Showing 11-13 of 13 results.