cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A061985 Values which can occur in sequence b(k) = 1 + b(floor(k/2)) + b(floor(k/3)) with b(0) = 0, i.e., in A061984.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 15, 19, 20, 21, 27, 32, 36, 37, 47, 48, 54, 64, 65, 80, 85, 92, 112, 113, 114, 135, 150, 158, 193, 199, 200, 228, 263, 264, 273, 329, 350, 351, 387, 457, 464, 474, 558, 614, 615, 616, 661, 787, 815, 826, 946, 1072, 1073, 1081, 1136
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Crossrefs

Programs

  • Haskell
    a061985 n = a061985_list !! n
    a061985_list = f (-1) a061984_list where
       f u (v:vs) = if v == u then f u vs else v : f v vs
    -- Reinhard Zumkeller, Jan 11 2014

Formula

a(n) = a(n-1) + C(A022328(n) + A022329(n), A022328(n)). - David Wasserman, Nov 17 2005

A086417 Sum of divisors of 3-smooth numbers.

Original entry on oeis.org

1, 3, 4, 7, 12, 15, 13, 28, 31, 39, 60, 40, 63, 91, 124, 120, 127, 195, 121, 252, 280, 255, 403, 363, 508, 600, 364, 511, 819, 847, 1020, 1240, 1092, 1023, 1651, 1815, 1093, 2044, 2520, 2548, 2047, 3315, 3751, 3279, 4092, 5080, 5460, 4095, 3280
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Haskell
    a086417 n = (2 ^ (a022328 n + 1) - 1) * (3 ^ (a022329 n + 1) - 1) `div` 2
    -- Reinhard Zumkeller, Nov 19 2015
  • Mathematica
    DivisorSigma[1,#]&/@Select[Range[4000],Max[FactorInteger[#][[All,1]]]<4&] (* Harvey P. Dale, Feb 14 2017 *)

Formula

a(n) = A000203(A003586(n));
a(n) = (2^(A022328(n)+1)-1)*(3^(A022329(n)+1)-1)/2.
a(n) = A000225(j) * A003462(k) for some j,k > 0. - Flávio V. Fernandes, May 29 2021

A069355 Numbers of form 2^i*3^j - (i+j) with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 12, 15, 20, 24, 27, 32, 43, 50, 58, 67, 77, 90, 103, 121, 138, 157, 185, 210, 238, 248, 281, 318, 376, 425, 480, 503, 568, 641, 723, 759, 856, 965, 1014, 1143, 1288, 1451, 1526, 1719, 1936, 2037, 2180, 2294, 2583, 2908, 3061, 3446, 3879, 4084
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Comments

Distinct values of A003586(m)-A069352(m) or of A069345(A003586(m)). - Michel Marcus, Apr 09 2018

Examples

			1 is a term because 2^0*3^0 - (0+0) = 2^1*3^0 - (1+0) = 1.
2 is a term because 2^2*3^0 - (2+0) = 2^0*3^1 - (0+1) = 2.
4 is a term because 2^1*3^1 - (1+1) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},Take[Flatten[Table[2^i 3^j-i-j,{i,0,nn},{j,0,nn}]]//Union,60]] (* Harvey P. Dale, Aug 29 2022 *)

Extensions

Duplicated term 2 and incorrect formula removed by Altug Alkan, Apr 09 2018

A069357 Numbers of form 2^i*3^j + (i+j) with i, j >= 0.

Original entry on oeis.org

1, 3, 4, 6, 8, 11, 15, 20, 21, 28, 30, 37, 40, 53, 58, 70, 77, 85, 102, 113, 135, 150, 167, 199, 222, 248, 264, 295, 330, 392, 439, 492, 521, 584, 655, 735, 777, 872, 979, 1034, 1161, 1304, 1465, 1546, 1737, 1952, 2059, 2194, 2314, 2601, 2924, 3083, 3466, 3897
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Crossrefs

Formula

Distinct values of A003586(k) + A069352(k). [Corrected by Georg Fischer, Dec 11 2022, further clarification by Sean A. Irvine, Apr 28 2024]

Extensions

Missing a(1)=1 inserted and duplicate values removed by Sean A. Irvine, Apr 28 2024

A086419 Sum of all prime factors of 3-smooth numbers.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 21, 22, 22, 22, 23, 23, 23, 24, 23, 24, 24, 24, 25, 24, 25, 25, 26, 25, 26, 26, 26, 27
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger[n]; sopfr /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

a(n) = A001414(A003586(n)).
a(n) = 2*A022328(n) + 3*A022329(n).

A257999 Numbers of the form, 2^i*3^j, i+j odd.

Original entry on oeis.org

2, 3, 8, 12, 18, 27, 32, 48, 72, 108, 128, 162, 192, 243, 288, 432, 512, 648, 768, 972, 1152, 1458, 1728, 2048, 2187, 2592, 3072, 3888, 4608, 5832, 6912, 8192, 8748, 10368, 12288, 13122, 15552, 18432, 19683, 23328, 27648, 32768, 34992, 41472, 49152, 52488
Offset: 1

Views

Author

Reinhard Zumkeller, May 16 2015

Keywords

Crossrefs

Complement of A036667 with respect to A003586.
Intersection of A026424 and A003586.

Programs

  • Haskell
    a257999 n = a257999_list !! (n-1)
    a257999_list = filter (odd . flip mod 2 . a001222) a003586_list
    
  • Mathematica
    max = 53000; Reap[Do[k = 2^i*3^j; If[k <= max && OddQ[i + j], Sow[k]], {i, 0, Log[2, max] // Ceiling}, {j, 0, Log[3, max] // Ceiling}]][[2, 1]] // Union (* Amiram Eldar, Feb 18 2021 after Jean-François Alcover at A036667 *)
  • Python
    from sympy import integer_log
    def A257999(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length()+(i&1)>>1 for i in range(integer_log(x, 3)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025

Formula

A069352(a(n)) mod 2 = 1.
Sum_{n>=1} 1/a(n) = 5/4. - Amiram Eldar, Feb 18 2021

A067371 Arithmetic derivatives of 3-smooth numbers.

Original entry on oeis.org

0, 1, 1, 4, 5, 12, 6, 16, 32, 21, 44, 27, 80, 60, 112, 81, 192, 156, 108, 272, 216, 448, 384, 297, 640, 540, 405, 1024, 912, 756, 1472, 1296, 1053, 2304, 2112, 1836, 1458, 3328, 3024, 2592, 5120, 4800, 4320, 3645, 7424, 6912, 6156, 11264, 5103, 10752
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2002, revised: Jul 19 2003

Keywords

Examples

			a(18) = A003415(A003586(18)) = A003415(72) = A003415(2^3*3^2) = (3*3+2*2)*2^(3-1)*3^(2-1) = (9+4)*2^2*3^1 = 13*4*3 = 156.
a(27) = A003415(A003586(27)) = A003415(243) = A003415(2^0*3^5) = (3*0+2*5)*2^(0-1)*3^(5-1) = ((0+10)/2)*3^4 = 5*81 = 405.
		

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; ad[1] = 0; ad[n_] := n * Total @ (Last[#]/First[#] & /@ FactorInteger[n]); ad /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

A003415(2^i+3^j) = (3*i + 2*j) * 2^(i-1) * 3^(j-1), i, j >=0.
a(n) = A003415(A003586(n)).

A086416 Number of divisors of 3-smooth numbers.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 3, 6, 5, 6, 8, 4, 6, 9, 10, 8, 7, 12, 5, 12, 12, 8, 15, 10, 14, 16, 6, 9, 18, 15, 16, 20, 12, 10, 21, 20, 7, 18, 24, 18, 11, 24, 25, 14, 20, 28, 24, 12, 8, 27, 30, 21, 22, 32, 30, 13, 16, 30, 35, 28, 24, 9, 36, 36, 14, 24, 33, 40, 35, 26, 18, 40, 42, 15, 32
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[10000], # == 2^IntegerExponent[#, 2] * 3^IntegerExponent[#, 3] &]] (* Amiram Eldar, Apr 15 2024 *)

Formula

a(n) = A000005(A003586(n)).
a(n) = if A086414(n) = A086415(n) then A086414(n)+1 else (A086414(n)+1)*(A086415(n)+1).
a(n) = (A022328(n)+1)*(A022329(n)+1).

A086418 Sum of distinct prime factors of 3-smooth numbers.

Original entry on oeis.org

0, 2, 3, 2, 5, 2, 3, 5, 2, 5, 5, 3, 2, 5, 5, 5, 2, 5, 3, 5, 5, 2, 5, 5, 5, 5, 3, 2, 5, 5, 5, 5, 5, 2, 5, 5, 3, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 2, 3, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 3, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 3, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 2, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; sopf[1] = 0; sopf[n_] := Plus @@ First@Transpose @ FactorInteger[n]; sopf /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

a(n) = A008472(A003586(n));
a(n) = 2*0^(0^A022328(n)) + 3*0^(0^A022329(n)).

A258051 Fractal sequence derived from A258033.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 2, 4, 1, 3, 0, 5, 2, 4, 1, 3, 0, 5, 2, 7, 4, 1, 6, 3, 0, 8, 5, 2, 7, 4, 1, 9, 6, 3, 0, 8, 5, 2, 10, 7, 4, 1, 9, 6, 3, 0, 8, 5, 2, 10, 7, 4, 12, 1, 9, 6, 3, 11, 0, 8, 5, 13, 2, 10, 7, 4, 12, 1, 9, 6, 3, 11, 0, 8, 5, 13, 2, 10, 7, 15, 4
Offset: 1

Views

Author

Keywords

Comments

The sequence is constructed like A258033 is constructed: after partitioning A258033 into segments starting with 0, in each segment the greatest term is to be deleted (see example);
this sequence is fractal, i.e. if the first occurrence of each n is removed, the resulting sequence is the original sequence.

Examples

			Segments of A258033 starting with 0, deleted maxima in brackets:
.   1:  0
.   2:  0 [2] 1
.   3:  0 2 1 [3]
.   4:  0 [5] 2 4 1 3
.   5:  0 5 2 4 1 [6] 3
.   6:  0 [8] 5 2 7 4 1 6 3
.   7:  0 8 5 2 [10] 7 4 1 9 6 3
.   8:  0 8 5 2 10 7 4 1 9 6 3 [11]
.   9:  0 8 5 [13] 2 10 7 4 12 1 9 6 3 11
.  10:  0 8 5 13 2 10 7 4 12 1 9 6 [14] 3 11
.  11:  0 8 [16] 5 13 2 10 7 15 4 12 1 9 6 14 3 11
.  12:  0 8 16 5 13 2 10 [18] 7 15 4 12 1 9 17 6 14 3 11
.  13:  0 8 16 5 13 2 10 18 7 15 4 12 1 9 17 6 14 3 11 [19]
.  14:  0 8 16 5 13 [21] 2 10 18 7 15 4 12 20 1 9 17 6 14 3 11 19
.  15:  0 8 16 5 13 21 2 10 18 7 15 4 12 20 1 9 17 6 14 [22] 3 11 19
		

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a258051 n = a258051_list !! (n-1)
    a258051_list = f (tail a258033_list) where
       f xs = (0 : (delete (maximum ys) ys)) ++ f zs
              where (ys, (_ : zs)) = span (> 0) xs
Previous Showing 11-20 of 23 results. Next