cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A086417 Sum of divisors of 3-smooth numbers.

Original entry on oeis.org

1, 3, 4, 7, 12, 15, 13, 28, 31, 39, 60, 40, 63, 91, 124, 120, 127, 195, 121, 252, 280, 255, 403, 363, 508, 600, 364, 511, 819, 847, 1020, 1240, 1092, 1023, 1651, 1815, 1093, 2044, 2520, 2548, 2047, 3315, 3751, 3279, 4092, 5080, 5460, 4095, 3280
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Haskell
    a086417 n = (2 ^ (a022328 n + 1) - 1) * (3 ^ (a022329 n + 1) - 1) `div` 2
    -- Reinhard Zumkeller, Nov 19 2015
  • Mathematica
    DivisorSigma[1,#]&/@Select[Range[4000],Max[FactorInteger[#][[All,1]]]<4&] (* Harvey P. Dale, Feb 14 2017 *)

Formula

a(n) = A000203(A003586(n));
a(n) = (2^(A022328(n)+1)-1)*(3^(A022329(n)+1)-1)/2.
a(n) = A000225(j) * A003462(k) for some j,k > 0. - Flávio V. Fernandes, May 29 2021

A069355 Numbers of form 2^i*3^j - (i+j) with i, j >= 0.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 12, 15, 20, 24, 27, 32, 43, 50, 58, 67, 77, 90, 103, 121, 138, 157, 185, 210, 238, 248, 281, 318, 376, 425, 480, 503, 568, 641, 723, 759, 856, 965, 1014, 1143, 1288, 1451, 1526, 1719, 1936, 2037, 2180, 2294, 2583, 2908, 3061, 3446, 3879, 4084
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Comments

Distinct values of A003586(m)-A069352(m) or of A069345(A003586(m)). - Michel Marcus, Apr 09 2018

Examples

			1 is a term because 2^0*3^0 - (0+0) = 2^1*3^0 - (1+0) = 1.
2 is a term because 2^2*3^0 - (2+0) = 2^0*3^1 - (0+1) = 2.
4 is a term because 2^1*3^1 - (1+1) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=20},Take[Flatten[Table[2^i 3^j-i-j,{i,0,nn},{j,0,nn}]]//Union,60]] (* Harvey P. Dale, Aug 29 2022 *)

Extensions

Duplicated term 2 and incorrect formula removed by Altug Alkan, Apr 09 2018

A069357 Numbers of form 2^i*3^j + (i+j) with i, j >= 0.

Original entry on oeis.org

1, 3, 4, 6, 8, 11, 15, 20, 21, 28, 30, 37, 40, 53, 58, 70, 77, 85, 102, 113, 135, 150, 167, 199, 222, 248, 264, 295, 330, 392, 439, 492, 521, 584, 655, 735, 777, 872, 979, 1034, 1161, 1304, 1465, 1546, 1737, 1952, 2059, 2194, 2314, 2601, 2924, 3083, 3466, 3897
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Crossrefs

Formula

Distinct values of A003586(k) + A069352(k). [Corrected by Georg Fischer, Dec 11 2022, further clarification by Sean A. Irvine, Apr 28 2024]

Extensions

Missing a(1)=1 inserted and duplicate values removed by Sean A. Irvine, Apr 28 2024

A086419 Sum of all prime factors of 3-smooth numbers.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 21, 22, 22, 22, 23, 23, 23, 24, 23, 24, 24, 24, 25, 24, 25, 25, 26, 25, 26, 26, 26, 27
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger[n]; sopfr /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

a(n) = A001414(A003586(n)).
a(n) = 2*A022328(n) + 3*A022329(n).

A257999 Numbers of the form, 2^i*3^j, i+j odd.

Original entry on oeis.org

2, 3, 8, 12, 18, 27, 32, 48, 72, 108, 128, 162, 192, 243, 288, 432, 512, 648, 768, 972, 1152, 1458, 1728, 2048, 2187, 2592, 3072, 3888, 4608, 5832, 6912, 8192, 8748, 10368, 12288, 13122, 15552, 18432, 19683, 23328, 27648, 32768, 34992, 41472, 49152, 52488
Offset: 1

Views

Author

Reinhard Zumkeller, May 16 2015

Keywords

Crossrefs

Complement of A036667 with respect to A003586.
Intersection of A026424 and A003586.

Programs

  • Haskell
    a257999 n = a257999_list !! (n-1)
    a257999_list = filter (odd . flip mod 2 . a001222) a003586_list
    
  • Mathematica
    max = 53000; Reap[Do[k = 2^i*3^j; If[k <= max && OddQ[i + j], Sow[k]], {i, 0, Log[2, max] // Ceiling}, {j, 0, Log[3, max] // Ceiling}]][[2, 1]] // Union (* Amiram Eldar, Feb 18 2021 after Jean-François Alcover at A036667 *)
  • Python
    from sympy import integer_log
    def A257999(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length()+(i&1)>>1 for i in range(integer_log(x, 3)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025

Formula

A069352(a(n)) mod 2 = 1.
Sum_{n>=1} 1/a(n) = 5/4. - Amiram Eldar, Feb 18 2021

A067371 Arithmetic derivatives of 3-smooth numbers.

Original entry on oeis.org

0, 1, 1, 4, 5, 12, 6, 16, 32, 21, 44, 27, 80, 60, 112, 81, 192, 156, 108, 272, 216, 448, 384, 297, 640, 540, 405, 1024, 912, 756, 1472, 1296, 1053, 2304, 2112, 1836, 1458, 3328, 3024, 2592, 5120, 4800, 4320, 3645, 7424, 6912, 6156, 11264, 5103, 10752
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 20 2002, revised: Jul 19 2003

Keywords

Examples

			a(18) = A003415(A003586(18)) = A003415(72) = A003415(2^3*3^2) = (3*3+2*2)*2^(3-1)*3^(2-1) = (9+4)*2^2*3^1 = 13*4*3 = 156.
a(27) = A003415(A003586(27)) = A003415(243) = A003415(2^0*3^5) = (3*0+2*5)*2^(0-1)*3^(5-1) = ((0+10)/2)*3^4 = 5*81 = 405.
		

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; ad[1] = 0; ad[n_] := n * Total @ (Last[#]/First[#] & /@ FactorInteger[n]); ad /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

A003415(2^i+3^j) = (3*i + 2*j) * 2^(i-1) * 3^(j-1), i, j >=0.
a(n) = A003415(A003586(n)).

A086416 Number of divisors of 3-smooth numbers.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 3, 6, 5, 6, 8, 4, 6, 9, 10, 8, 7, 12, 5, 12, 12, 8, 15, 10, 14, 16, 6, 9, 18, 15, 16, 20, 12, 10, 21, 20, 7, 18, 24, 18, 11, 24, 25, 14, 20, 28, 24, 12, 8, 27, 30, 21, 22, 32, 30, 13, 16, 30, 35, 28, 24, 9, 36, 36, 14, 24, 33, 40, 35, 26, 18, 40, 42, 15, 32
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[10000], # == 2^IntegerExponent[#, 2] * 3^IntegerExponent[#, 3] &]] (* Amiram Eldar, Apr 15 2024 *)

Formula

a(n) = A000005(A003586(n)).
a(n) = if A086414(n) = A086415(n) then A086414(n)+1 else (A086414(n)+1)*(A086415(n)+1).
a(n) = (A022328(n)+1)*(A022329(n)+1).

A086418 Sum of distinct prime factors of 3-smooth numbers.

Original entry on oeis.org

0, 2, 3, 2, 5, 2, 3, 5, 2, 5, 5, 3, 2, 5, 5, 5, 2, 5, 3, 5, 5, 2, 5, 5, 5, 5, 3, 2, 5, 5, 5, 5, 5, 2, 5, 5, 3, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 2, 3, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 3, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 3, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 2, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; sopf[1] = 0; sopf[n_] := Plus @@ First@Transpose @ FactorInteger[n]; sopf /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

a(n) = A008472(A003586(n));
a(n) = 2*0^(0^A022328(n)) + 3*0^(0^A022329(n)).

A033031 Squarefree kernels of 3-smooth numbers.

Original entry on oeis.org

1, 2, 3, 2, 6, 2, 3, 6, 2, 6, 6, 3, 2, 6, 6, 6, 2, 6, 3, 6, 6, 2, 6, 6, 6, 6, 3, 2, 6, 6, 6, 6, 6, 2, 6, 6, 3, 6, 6, 6, 2, 6, 6, 6, 6, 6, 6, 2, 3, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 6, 6, 3, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 2, 6, 6, 3, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 6, 3, 6, 2, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2003

Keywords

Examples

			A003586(17) = 64 = 2^6 -> a(17) = 2,
A003586(18) = 72 = 2^3 * 3^2 -> a(18) = 2*3 = 6,
A003586(19) = 81 = 3^4 -> a(19) = 3.
		

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 3^k; While[n <= 3^m, AppendTo[s, n]; n*=2], {k, 0, m}]; rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); rad /@ Union[s] (* Amiram Eldar, Jan 29 2020 *)

Formula

a(n) = A007947(A003586(n)).
a(n) = (2*0^(A022328(n)-1)) * (3*0^(A022329(n)-1)) for n>1. - Reinhard Zumkeller, Jul 18 2003
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 6. - Amiram Eldar, Jul 13 2023

A372744 If the n-th 3-smooth number, A003586(n), equals 2^i * 3^j for some i, j >= 0, then the a(n)-th 3-smooth number, A003586(a(n)), equals 2^j * 3^i.

Original entry on oeis.org

1, 3, 2, 7, 5, 12, 4, 10, 19, 8, 16, 6, 27, 14, 24, 11, 37, 21, 9, 33, 18, 49, 30, 15, 44, 26, 13, 62, 40, 23, 57, 36, 20, 77, 52, 32, 17, 71, 47, 29, 93, 66, 43, 25, 87, 60, 39, 111, 22, 81, 55, 35, 104, 75, 51, 131, 31, 98, 69, 46, 123, 28, 91, 64, 152, 42
Offset: 1

Views

Author

Rémy Sigrist, May 12 2024

Keywords

Comments

This sequence is a self-inverse permutation of the positive integers with infinitely many fixed points (A202821).

Examples

			A003586(8) = 12 = 2^2 * 3^1, A003586(10) = 18 = 2^1 * 3^2, so a(8) = 10 and.
		

Crossrefs

Cf. A003586, A022328, A022329, A202821 (fixed points).

Programs

  • PARI
    \\ See Links section.

Formula

A022328(a(n)) = A022329(n).
A022329(a(n)) = A022328(n).
a(n) = n iff n belongs to A202821.
sign(a(n) - n) = sign(A022328(n) - A022329(n)).
Previous Showing 11-20 of 21 results. Next