A202059
Number of ascent sequences avoiding the pattern 100.
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 153, 583, 2410, 10721, 50965, 257393, 1374187, 7722862, 45520064, 280502924, 1802060232, 12040040899, 83475921469, 599400745354, 4449689901306, 34096169966924, 269286884243138, 2189193150557825, 18297258191472880, 157049750065028868
Offset: 0
- Andrew Conway and Miles Conway, Table of n, a(n) for n = 0..628
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- P. Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641, 2011
Corrected a(7), was 383, but should be 583 according to Duncan-Steimgrimsson paper and independent computation. -
Andrew Baxter, Jan 06 2014
A202060
Number of ascent sequences avoiding the pattern 110.
Original entry on oeis.org
1, 1, 2, 5, 14, 43, 143, 510, 1936, 7774, 32848, 145398, 671641, 3227218, 16084747, 82955090, 441773793, 2424845273, 13695855478, 79485625385, 473393639992, 2889930405750, 18064609329598, 115513453404597, 754956282308784, 5039064184597772, 34323984497482559
Offset: 0
- Andrew Conway and Miles Conway, Table of n, a(n) for n = 0..43
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- P. Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641, 2011
A202061
Number of ascent sequences avoiding the pattern 120.
Original entry on oeis.org
1, 1, 2, 5, 14, 42, 133, 442, 1535, 5546, 20754, 80113, 317875, 1292648, 5374073, 22794182, 98462847, 432498659, 1929221610, 8728815103, 40017844229, 185727603829, 871897549029, 4137132922197, 19828476952117, 95934298966615, 468291607852143, 2305162065138433
Offset: 0
- Liang Chengwei, Shi Lecun and Cai Zhongyu, Table of n, a(n) for n = 0..500 (terms 0..74 from Andrew Conway and Miles Conway)
- Andrew R. Conway, Miles Conway, Andrew Elvey Price and Anthony J. Guttmann, Pattern-avoiding ascent sequences of length 3, arXiv:2111.01279 [math.CO], Nov 01 2021.
- Paul Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
A218580
Triangle read by rows: T(n,k) is the number of ascent sequences of length n with first occurrence of the maximal value at position k-1.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 1, 8, 13, 15, 16, 1, 16, 35, 47, 56, 62, 1, 32, 97, 153, 204, 248, 279, 1, 64, 275, 515, 770, 1030, 1257, 1423, 1, 128, 793, 1785, 3000, 4424, 5869, 7140, 8100, 1, 256, 2315, 6347, 12026, 19582, 28293, 37058, 44843, 50887
Offset: 1
Triangle starts:
[ 1] 1,
[ 2] 1, 1,
[ 3] 1, 2, 2,
[ 4] 1, 4, 5, 5,
[ 5] 1, 8, 13, 15, 16,
[ 6] 1, 16, 35, 47, 56, 62,
[ 7] 1, 32, 97, 153, 204, 248, 279,
[ 8] 1, 64, 275, 515, 770, 1030, 1257, 1423,
[ 9] 1, 128, 793, 1785, 3000, 4424, 5869, 7140, 8100,
[10] 1, 256, 2315, 6347, 12026, 19582, 28293, 37058, 44843, 50887,
...
Cf.
A022493 (number of ascent sequences).
Cf.
A218579 (ascent sequences with last zero at position k-1),
A218581 (ascent sequences with last occurrence of the maximal value at position k-1).
Cf.
A137251 (ascent sequences with k ascents),
A218577 (ascent sequences with maximal element k),
A175579 (ascent sequences with k zeros).
A218581
Triangle read by rows: T(n,k) is the number of ascent sequences of length n with last occurrence of the maximal value at position k-1.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 1, 4, 10, 0, 1, 6, 15, 31, 0, 1, 10, 29, 62, 115, 0, 1, 18, 63, 148, 288, 496, 0, 1, 34, 149, 392, 826, 1496, 2437, 0, 1, 66, 375, 1120, 2592, 5036, 8615, 13435, 0, 1, 130, 989, 3392, 8698, 18332, 33391, 54548, 82127
Offset: 1
Triangle starts:
[ 1] 1,
[ 2] 0, 2,
[ 3] 0, 1, 4,
[ 4] 0, 1, 4, 10,
[ 5] 0, 1, 6, 15, 31,
[ 6] 0, 1, 10, 29, 62, 115,
[ 7] 0, 1, 18, 63, 148, 288, 496,
[ 8] 0, 1, 34, 149, 392, 826, 1496, 2437,
[ 9] 0, 1, 66, 375, 1120, 2592, 5036, 8615, 13435,
[10] 0, 1, 130, 989, 3392, 8698, 18332, 33391, 54548, 82127,
[11] 0, 1, 258, 2703, 10768, 30768, 70868, 138635, 239688, 377001, 551384,
...
Cf.
A022493 (number of ascent sequences).
Cf.
A218579 (ascent sequences with last zero at position k-1),
A218580 (ascent sequences with first occurrence of the maximal value at position k-1).
Cf.
A137251 (ascent sequences with k ascents),
A218577 (ascent sequences with maximal element k),
A175579 (ascent sequences with k zeros).
A294220
Number A(n,k) of ascent sequences of length n where no letter multiplicity is larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 10, 1, 0, 1, 1, 2, 5, 14, 27, 1, 0, 1, 1, 2, 5, 15, 47, 83, 1, 0, 1, 1, 2, 5, 15, 52, 180, 277, 1, 0, 1, 1, 2, 5, 15, 53, 210, 773, 1015, 1, 0, 1, 1, 2, 5, 15, 53, 216, 964, 3701, 4007, 1, 0
Offset: 0
A(4,2) = 10: 0123, 0011, 0012, 0101, 0102, 0110, 0112, 0120, 0121, 0122.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 4, 5, 5, 5, 5, 5, 5, ...
0, 1, 10, 14, 15, 15, 15, 15, 15, ...
0, 1, 27, 47, 52, 53, 53, 53, 53, ...
0, 1, 83, 180, 210, 216, 217, 217, 217, ...
0, 1, 277, 773, 964, 1006, 1013, 1014, 1014, ...
0, 1, 1015, 3701, 4960, 5270, 5326, 5334, 5335, ...
-
b:= proc(n, i, t, p, k) option remember; `if`(n=0, 1,
add(`if`(coeff(p, x, j)=k, 0, b(n-1, j, t+
`if`(j>i, 1, 0), p+x^j, k)), j=1..t+1))
end:
A:= (n, k)-> b(n, 0$3, min(n, k)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n == 0, 1, Sum[ If[ Coefficient[p, x, j] == k, 0, b[n-1, j, t + If[j>i, 1, 0], p + x^j, k]], {j, 1, t+1}]];
A[n_, k_] := b[n, 0, 0, 0, Min[n, k]];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Aug 05 2018, translated from Maple *)
A099960
An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 8, 17, 56, 155, 608, 2073, 9440, 38227, 198272, 929569, 5410688, 28820619, 186043904, 1109652905, 7867739648, 51943281731, 401293838336, 2905151042481, 24290513745920, 191329672483963, 1721379917619200, 14655626154768697, 141174819474169856
Offset: 0
- Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 220, answer to exercise 174, Addison-Wesley, 2009.
-
with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 30 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: seq(R[n][1],n=0..30); # Emeric Deutsch
-
g1 = Table[2*(4^n-1)*BernoulliB[2*n] // Abs, {n, 0, 13}]; g2 = Table[2*(-1)^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}], {n, 0, 13}]; Riffle[g1, g2] // Rest (* Jean-François Alcover, May 23 2013 *)
-
# Algorithm of L. Seidel (1877)
def A099960_list(n) :
D = [0]*(n//2+3); D[1] = 1
R = []; b = True; h = 1
for i in (1..n) :
if b :
for k in range(h,0,-1) : D[k] += D[k+1]
R.append(D[1]); h += 1
else :
for k in range(1,h, 1) : D[k] += D[k-1]
R.append(D[h-1])
b = not b
return R
A099960_list(27) # Peter Luschny, Apr 30 2012
A289312
The number of upper-triangular matrices with integer entries whose absolute sum is equal to n, and each row and column contains at least one nonzero entry.
Original entry on oeis.org
1, 2, 6, 26, 142, 946, 7446, 67658, 697118, 8031586, 102312486, 1427905658, 21666671534, 355138949394, 6253348428598, 117720540700842, 2359368991571518, 50157679523340994, 1127327559500923974, 26709016625807923418, 665292778385210384078
Offset: 0
a(2) = 6: The six upper triangular matrices of size 2 with no zero rows or columns are (+-2) and
/+-1 0\
| |.
\0 +-1/
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Ankush Goswami, Abhash Kumar Jha, Byungchan Kim, and Robert Osburn, Asymptotics and sign patterns for coefficients in expansions of Habiro elements, arXiv:2204.02628 [math.NT], 2022.
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
-
G:= add(mul(1 - ((1-x)/(1+x))^k, k=1..n),n=0..20):
S:= series(G,x,21):
seq(coeff(S,x,j),j=0..20);
# Peter Bala, Jul 24 2017
-
m = 21; Sum[Product[1 - ((1-x)/(1+x))^k + O[x]^m, {k, 1, n}], {n, 0, m}] // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2020 *)
A289313
The number of upper-triangular matrices with integer entries whose absolute sum is equal to n and such that each row contains a nonzero entry.
Original entry on oeis.org
1, 2, 10, 74, 722, 8786, 128218, 2182554, 42456226, 929093538, 22590839466, 604225121258, 17630145814898, 557285515817970, 18970857530674554, 691929648113663802, 26919562120779248962, 1112769248605003393858, 48704349211392743606602
Offset: 0
a(2) = 10: The ten generalized row-Fishburn matrices of size 2 are
(+-2),
/+-1 0\ and /0 +-1\
| | | |
\0 +-1/ \0 +-1/.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
-
G:= add(mul( ((1 + x)/(1 - x))^i - 1, i=1..n),n=0..20):
S:= series(G,x,21):
seq(coeff(S,x,j),j=0..20);
# Peter Bala, Jul 24 2017
A225588
Number of descent sequences of length n.
Original entry on oeis.org
1, 1, 2, 4, 9, 23, 67, 222, 832, 3501, 16412, 85062, 484013, 3004342, 20226212, 146930527, 1146389206, 9566847302, 85073695846, 803417121866, 8032911742979, 84796557160893, 942648626858310, 11009672174119829, 134809696481902160, 1727161011322322267, 23110946295566466698, 322435363123261622935
Offset: 0
The a(5)=23 descent sequences of length 5 are (dots for zeros)
01: [ . . . . . ]
02: [ . . . . 1 ]
03: [ . . . 1 . ]
04: [ . . . 1 1 ]
05: [ . . 1 . . ]
06: [ . . 1 . 1 ]
07: [ . . 1 . 2 ]
08: [ . . 1 1 . ]
09: [ . . 1 1 1 ]
10: [ . 1 . . . ]
11: [ . 1 . . 1 ]
12: [ . 1 . . 2 ]
13: [ . 1 . 1 . ]
14: [ . 1 . 1 1 ]
15: [ . 1 . 1 2 ]
16: [ . 1 . 2 . ]
17: [ . 1 . 2 1 ]
18: [ . 1 . 2 2 ]
19: [ . 1 1 . . ]
20: [ . 1 1 . 1 ]
21: [ . 1 1 . 2 ]
22: [ . 1 1 1 . ]
23: [ . 1 1 1 1 ]
Cf.
A225624 (triangle: descent sequences by numbers of descents).
-
b:= proc(n, i, t) option remember; `if`(n<1, 1,
add(b(n-1, j, t+`if`(j b(n-1, 0, 0):
seq(a(n), n=0..30); # Alois P. Heinz, May 13 2013
-
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[b[n-1, j, t + If[jJean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
-
# Program adapted from Alois P. Heinz's Maple code in A022493.
# b(n,i,t) gives the number of length-n postfixes of descent sequences
# with a prefix having t descents and last element i.
@CachedFunction
def b(n,i,t):
if n<=1: return 1
return sum( b(n-1, j, t+(j
Comments