cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A292287 Number of multisets of exactly n nonempty balanced binary Lyndon words with a total of 4n letters (2n zeros and 2n ones).

Original entry on oeis.org

1, 1, 4, 12, 43, 142, 508, 1781, 6414, 23124, 84296, 308613, 1137129, 4207456, 15636927, 58322808, 218272766, 819319778, 3083913810, 11636761924, 44010780075, 166802192488, 633420816341, 2409731688860, 9182826866499, 35048239457878, 133965833871427
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) option remember; `if`(n=0, 1, add(
          mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/(2n)];
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2023, after Alois P. Heinz *)

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^A022553(j+1).
a(n) = A289978(2n,n).

A066316 Number of identity (asymmetric) bracelets (or necklaces) with n red and blue beads such that the beads switch colors when bracelet is turned over.

Original entry on oeis.org

1, 5, 24, 91, 340, 1224, 4365, 15521, 55311, 197964, 712243, 2577105, 9375360, 34284971, 125977464, 464938189, 1722817415, 6407307543, 23909159417, 89491715105, 335908316844, 1264097675775, 4768430557020, 18027183349395
Offset: 4

Views

Author

Christian G. Bower, Dec 13 2001

Keywords

Formula

a(n)=A022553(n)-A066315(n)

A131764 Inverse Euler transform of central binomial coefficients A000984.

Original entry on oeis.org

1, 2, 3, 10, 30, 102, 335, 1170, 4080, 14560, 52377, 190650, 698870, 2581110, 9586395, 35791358, 134215680, 505290270, 1908866960, 7233629130, 27487764474, 104715392730, 399822314775, 1529755308210, 5864061663920, 22517998136832, 86607683851185, 333599972392960, 1286742745883790, 4969489243995030, 19215358392200893, 74382032555280450, 288230376084602880
Offset: 0

Views

Author

F. Chapoton, Oct 04 2007

Keywords

Comments

This is the sequence of dimensions of a free Lie algebra on some specific set of generators.

Examples

			2*x + 3*x^2 + 10*x^3 + 30*x^4 + 102*x^5 + 335*x^6 + 1170*x^7 + 4080*x^8 + ...
(1-x)^(-2)*(1-x^2)^(-3)*(1-x^3)^(-10)*(1-x^4)^(-30)*(1-x^5)^(-102) = 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 + ... .
		

Crossrefs

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> binomial(2*n, n)):
    seq(a(n), n = 0..32); # Peter Luschny, Nov 21 2022
  • Mathematica
    a[n_] := (1/n)*DivisorSum[n, MoebiusMu[n/#]*2^(2*#-1)&]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 20 2017 *)
  • MuPAD
    a(n):=proc(n) begin 1/n*_plus(moebius(n/d)*2^(2*d-1)$d in divisors(n)) end;
    
  • PARI
    a(n)=sumdiv(n,d,1/n*moebius(n/d)*2^(d*2-1)); /* Joerg Arndt, Jul 06 2011 */
    
  • PARI
    {a(n) = local(A); if( n<1, 0, A = sqrt(1 - 4*x + x * O(x^n)); for( k=1, n-1, A *= (1 - x^k + x * O(x^n))^ polcoeff( A, k)); -polcoeff( A, n))} /* Michael Somos, Apr 01 2012 */

Formula

a(n) = (1/n) * Sum_{d|n} moebius(n/d)*2^(2*d-1) for n > 0, a(0) = 1.
a(n) ~ 2^(2*n-1) / n. - Vaclav Kotesovec, Oct 09 2019

Extensions

More explicit definition from Michael Somos, Apr 01 2012. - N. J. A. Sloane, Feb 20 2017

A349001 The number of Lyndon words of size n from an alphabet of 5 letters and 1st and 2nd letter of the alphabet with equal frequency in the words.

Original entry on oeis.org

1, 3, 4, 14, 46, 174, 656, 2640, 10790, 45340, 193600, 839820, 3686424, 16353924, 73187456, 330052646, 1498335650, 6841899606, 31404443032, 144814450188, 670552118244, 3116578216310, 14534401932712, 67992210407514, 318969964124256, 1500268062754830
Offset: 0

Views

Author

R. J. Mathar, Nov 05 2021

Keywords

Comments

Counts a subset of the Lyndon words in A001692. Here there is no requirement of how often the 3rd to 5th letter of the alphabet are in the admitted word, only on the frequency of the 1st and 2nd letter of the alphabet.
Let T(n,k,M) be the number of words of length n drawn from an alphabet of size M where the first k letters of the alphabet appear with the same frequency f in each word. Then T(n,k,M) = Sum_{f=0..floor(n/k)} (M-k)^(n-f*k) * Product_{i=0..k-1} binomial(n-i*f,f) and T(n,2,5) = A026375(n), T(n,3,6) = A294035(n), T(n,2,6) = A081671(n). Removing the words with cycles by the inclusion-exclusion principle by a Mobius Transform gives words of length n of that type without cycles and division through n the Lyndon words of that type. - R. J. Mathar, Nov 07 2021

Examples

			Examples for the alphabet {0,1,2,3,4}:
a(0)=1 counts (), the empty word.
a(3)=14 counts (021) (031) (041) (012) (013) (223) (233) (243) (014) (224) (234) (334) (244) (344), words of length 3 where the letters 0 and the 1 occur both either not or once.
a(4)=46 counts (0011) (0221) (0321) (0421) (0231) (0331) (0431) (0241) (0341) (0441) (0212) (0312) (0412) (0122) (0132) (0142) (0213) (0313) (0413) (0123) (2223) (0133) (2233) (2333) (2433) (0143) (2243) (2343) (2443) (0214) (0314) (0414) (0124) (2224) (2324) (0134) (2234) (2334) (3334) (2434) (0144) (2244) (2344) (3344) (2444) (3444).
		

Crossrefs

Cf. A022553 (alphabet of 2 letters), A290277 (of 3 letters), A060165 (of 4 letters), A026375.

Programs

  • PARI
    a(n) = if(n>0, sumdiv(n, d, moebius(n/d)*sum(k=0, d, binomial(d,k)*binomial(2*k,k)))/n, n==0) \\ Andrew Howroyd, Jan 14 2023

Formula

n*a(n) = Sum_{d|n} mu(d)*A026375(n/d) where mu = A008683.

Extensions

Terms a(16) and beyond from Andrew Howroyd, Jan 14 2023

A130513 Subtriangle of triangle in A051168: remove central column of A051168 and all columns to the right; now read by upwards diagonals.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 2, 1, 0, 14, 7, 3, 1, 0, 42, 20, 9, 3, 1, 0, 132, 66, 30, 12, 4, 1, 0, 429, 212, 99, 40, 15, 4, 1, 0, 1430, 715, 333, 143, 55, 18, 5, 1, 0, 4862, 2424, 1144, 497, 200, 70, 22, 5, 1, 0, 16796, 8398, 3978, 1768, 728, 273, 91, 26, 6, 1, 0, 58786, 29372, 13995
Offset: 1

Views

Author

Philippe Deléham, Aug 08 2007

Keywords

Examples

			Triangle T(n,k), 1<=k<=n, begins:
1;
1, 0;
2, 1, 0;
5, 2, 1, 0;
14, 7, 3, 1, 0;
42, 20, 9, 3, 1, 0;
132, 66, 30, 12, 4, 1, 0;
429, 212, 99, 40, 15, 4, 1, 0;
		

References

  • A. Errera, Analysis situs: Un problème d'énumération, Memoires Acad. Bruxelles (1931), Serie 2, Vol. 11, No. 6, 26pp.

Crossrefs

Programs

  • Mathematica
    Table[1/(2n-k) Plus@@ (MoebiusMu[ # ]Binomial[(2n-k)/#,(n-k)/# ]&/@ Divisors[GCD[2n-k,n-k]]),{n,12},{k,n}] (* Wouter Meeussen, Jul 20 2008 *)

Formula

Sum_{k, 1<=k<=n} T(n,k) = A022553(n); Sum_{k, 1<=k<=n}k*T(n,k) = A002996(n).
T(n,k) = 1/(2n-k) Sum( d | gcd(2n-k,n-k) = mu(d) C((2n-k)/d,(n-k)/d) ). - Wouter Meeussen, Jul 20 2008

Extensions

Edited by N. J. A. Sloane, Oct 08 2007
Previous Showing 31-35 of 35 results.