cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A351621 a(1) = 1; a(n) = 1 + a(n-1) + Sum_{k=2..n} a(floor(n/k)).

Original entry on oeis.org

1, 3, 6, 12, 19, 32, 46, 69, 96, 133, 171, 234, 298, 379, 471, 595, 720, 891, 1063, 1288, 1531, 1815, 2100, 2496, 2900, 3371, 3873, 4479, 5086, 5848, 6611, 7530, 8491, 9580, 10691, 12088, 13486, 15059, 16700, 18642, 20585, 22885, 25186, 27818, 30580, 33630, 36681, 40363, 44060, 48208
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 20 2022

Keywords

Comments

Partial sums of A345139.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + a[n - 1] + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 1, 50}]

Formula

G.f. A(x) satisfies: A(x) = ( x + Sum_{k>=2} (1 - x^k) * A(x^k) ) / (1 - x)^2.

A359399 a(1) = 1; a(n) = Sum_{k=2..n} k * a(floor(n/k)).

Original entry on oeis.org

1, 2, 5, 11, 16, 31, 38, 62, 80, 105, 116, 194, 207, 242, 287, 383, 400, 526, 545, 675, 738, 793, 816, 1200, 1250, 1315, 1423, 1605, 1634, 1979, 2010, 2394, 2493, 2578, 2683, 3475, 3512, 3607, 3724, 4364, 4405, 4888, 4931, 5217, 5577, 5692, 5739, 7563, 7661, 8011
Offset: 1

Views

Author

Seiichi Manyama, Mar 31 2023

Keywords

Crossrefs

Cf. A022825.

Programs

  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A359399(n):
        if n <= 1:
            return 1
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2*(j2-1)-j*(j-1)>>1)*A359399(k1)
            j, k1 = j2, n//j2
        return c+(n*(n+1)-(j-1)*j>>1) # Chai Wah Wu, Mar 31 2023

Formula

G.f. A(x) satisfies A(x) = x + (1/(1 - x)) * Sum_{k>=2} k * (1 - x^k) * A(x^k).

A089646 a(n) = Sum(a(floor(n/p)): p prime and p<=n); a(1) = 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 13, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 33, 35, 36, 38, 41, 42, 43, 45, 46, 47, 51, 52, 53, 56, 57, 58, 59, 60, 62, 64, 65, 66, 69, 71, 72, 74, 75, 76, 82, 83, 84, 87, 87, 89, 93, 94, 95, 97, 101, 102, 106
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 02 2004

Keywords

Examples

			a(10) = a([10/2])+a([10/3])+a([10/5])+a([10/7]) =
a(5)+a(3)+a(2)+a(1) = (a([5/2])+a([5/3])+a([5/5])) + (a([3/2])+a([3/3])) +
a([2/2]) + a(1) = (a(2)+a(1)+a(1)) + (a(1)+a(1)) + a(1) + a(1) = a([2/2]) +
6*a(1) = a(1) + 6*1 = 7.
		

Crossrefs

Cf. A022825.

A332800 Number of permutations sigma of [n] such that (sigma(k) mod sigma(k+1)) <= (sigma(k+1) mod sigma(k+2)) for 1 <= k <= n - 2.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 44, 109, 241, 530, 1176, 3180, 6456, 14835, 34672, 81877, 179434, 479275, 977224, 2503363, 5339049, 11207391, 28379591, 82473713, 166689486, 370775384, 877910547, 2150475950, 4608590865, 12146671367, 24620749285, 64137229920, 143062854926
Offset: 0

Views

Author

Seiichi Manyama, Feb 27 2020

Keywords

Comments

Conjecture: Number of permutations sigma such that (sigma(k) mod sigma(k+1)) < (sigma(k+1) mod sigma(k+2)) for 1 <= k <= n - 2 is equal to A022825(n). This is true for n <= 19.

Examples

			b(n) = sigma(n) mod sigma(n+1).
In case of n = 3.
    |           | b(1),b(2)
----+-----------+----------
  1 | [1, 2, 3] | [1, 2] *
  2 | [1, 3, 2] | [1, 1]
  3 | [2, 1, 3] | [0, 1] *
  4 | [3, 1, 2] | [0, 1] *
In case of n = 4.
    |              | b(1),b(2),b(3)
----+--------------+---------------
  1 | [1, 2, 3, 4] | [1, 2, 3] *
  2 | [1, 3, 2, 4] | [1, 1, 2]
  3 | [1, 4, 3, 2] | [1, 1, 1]
  4 | [2, 1, 3, 4] | [0, 1, 3] *
  5 | [2, 1, 4, 3] | [0, 1, 1]
  6 | [3, 1, 2, 4] | [0, 1, 2] *
  7 | [4, 1, 2, 3] | [0, 1, 2] *
  8 | [4, 1, 3, 2] | [0, 1, 1]
  9 | [4, 2, 1, 3] | [0, 0, 1]
* (strongly increasing)
		

Crossrefs

Cf. A022825.

Extensions

a(17)-a(20) from Alois P. Heinz, Feb 27 2020
a(21)-a(22) from Giovanni Resta, Mar 03 2020
a(23)-a(31) from Bert Dobbelaere, Mar 12 2020
a(32) from Bert Dobbelaere, Mar 15 2020
Previous Showing 11-14 of 14 results.