cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A259362 a(1) = 1, for n > 1: a(n) is the number of ways to write n as a nontrivial perfect power.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Doug Bell, Jun 24 2015

Keywords

Comments

a(n) = number of integer pairs (i,j) for distinct values of i where i > 0, j > 1 and n = i^j. Since 1 = 1^r for all real values of r, the requirement for a distinct i causes a(1) = 1 instead of a(1) = infinity.
Alternatively, the sequence can be defined as: a(1) = 1, for n > 1: a(n) = number of pairs (i,j) such that i > 0, j > 1 and n = i^j.
A007916 = n, where a(n) = 0.
A001597 = n, where a(n) > 0.
A175082 = n, where n = 1 or a(n) = 0.
A117453 = n, where n = 1 or a(n) > 1.
A175065 = n, where n > 1 and a(n) > 0 and this is the first occurrence in this sequence of a(n).
A072103 = n repeated a(n) times where n > 1.
A075802 = min(1, a(n)).
A175066 = a(n), where n = 1 or a(n) > 1. This sequence is an expansion of A175066.
A253642 = 0 followed by a(n), where n > 1 and a(n) > 0.
A175064 = a(1) followed by a(n) + 1, where n > 1 and a(n) > 0.
Where n > 1, A001597(x) = n (which implies a(n) > 0), i = A025478(x) and j = A253641(n), then a(n) = A000005(j) - 1, which is the number of factors of j greater than 1. The integer pair (i,j) comprises the smallest value i and the largest value j where i > 0, j > 1 and n = i^j. The a(n) pairs of (a,b) where a > 0, b > 1 and n = a^b are formed with b = each of the a(n) factors of j greater than 1. Examples for n = {8,4096}:
a(8) = 1, A001597(3) = 8, A025478(3) = 2, A253641(8) = 3, 8 = 2^3 and A000005(3) - 1 = 1 because there is one factor of 3 greater than 1 [3]. The set of pairs (a,b) is {(2,3)}.
a(4096) = 5, A001597(82) = 4096, A025478(82) = 2, A253641(4096) = 12, 4096 = 2^12 and A000005(12) - 1 = 5 because there are five factors of 12 greater than 1 [2,3,4,6,12]. The set of pairs (a,b) is {(64,2),(16,3),(8,4),(4,6),(2,12)}.
A023055 = the ordered list of x+1 with duplicates removed, where x is the number of consecutive zeros appearing in this sequence between any two nonzero terms.
A070428(x) = number of terms a(n) > 0 where n <= 10^x.
a(n) <= A188585(n).

Examples

			a(6) = 0 because there is no way to write 6 as a nontrivial perfect power.
a(9) = 1 because there is one way to write 9 as a nontrivial perfect power: 3^2.
a(16) = 2 because there are two ways to write 16 as a nontrivial perfect power: 2^4, 4^2.
From _Friedjof Tellkamp_, Jun 14 2025: (Start)
n:       1, 2, 3, 4, 5, 6, 7, 8, 9, ...
Squares: 1, 0, 0, 1, 0, 0, 0, 0, 1, ... (A010052)
Cubes:   1, 0, 0, 0, 0, 0, 0, 1, 0, ... (A010057)
...
Sum:    oo, 0, 0, 1, 0, 0, 0, 1, 1, ...
a(1)=1:  1, 0, 0, 1, 0, 0, 0, 1, 1, ... (= this sequence). (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Sum[Boole[IntegerQ[n^(1/k)]], {k, 2, Floor[Log[2, n]]}]]; Array[a, 100] (* Friedjof Tellkamp, Jun 14 2025 *)
    a[n_] := If[n == 1, 1, DivisorSigma[0, Apply[GCD, Transpose[FactorInteger[n]][[2]]]] - 1]; Array[a, 100] (* Michael Shamos, Jul 06 2025 *)
  • PARI
    a(n) = if (n==1, 1, sum(i=2, logint(n, 2), ispower(n, i))); \\ Michel Marcus, Apr 11 2025

Formula

a(1) = 1, for n > 1: a(n) = A000005(A253641(n)) - 1.
If n not in A001597, then a(n) = 0, otherwise a(n) = A175064(x) - 1 where A001597(x) = n.
From Friedjof Tellkamp, Jun 14 2025: (Start)
a(n) = A089723(n) - 1, for n > 1.
a(n) = A010052(n) + A010057(n) + A374016(n) + (...), for n > 1.
Sum_{k>=2..n} a(k) = A089361(n), for n > 1.
G.f.: x + Sum_{j>=2, k>=2} x^(j^k).
Dirichlet g.f.: 1 + Sum_{k>=2} zeta(k*s)-1. (End)

A377435 Number of perfect-powers x in the range 2^n <= x < 2^(n+1).

Original entry on oeis.org

1, 0, 1, 2, 3, 3, 5, 7, 8, 11, 16, 24, 32, 42, 61, 82, 118, 166, 231, 322, 453, 635, 892, 1253, 1767, 2487, 3505, 4936, 6959, 9816, 13850, 19538, 27578, 38933, 54972, 77641, 109668, 154922, 218879, 309277, 437047, 617658, 872968, 1233896, 1744153, 2465547, 3485478
Offset: 0

Views

Author

Gus Wiseman, Nov 04 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.
Also the number of perfect-powers with n bits.

Examples

			The perfect-powers in each prescribed range (rows):
    1
    .
    4
    8    9
   16   25   27
   32   36   49
   64   81  100  121  125
  128  144  169  196  216  225  243
  256  289  324  343  361  400  441  484
  512  529  576  625  676  729  784  841  900  961 1000
Their binary expansions (columns):
  1  .  100  1000  10000  100000  1000000  10000000  100000000
             1001  11001  100100  1010001  10010000  100100001
                   11011  110001  1100100  10101001  101000100
                                  1111001  11000100  101010111
                                  1111101  11011000  101101001
                                           11100001  110010000
                                           11110011  110111001
                                                     111100100
		

Crossrefs

The union of all numbers counted is A001597, without powers of two A377702.
The version for squarefree numbers is A077643.
These are the first differences of A188951.
The version for prime-powers is A244508.
For primes instead of powers of 2 we have A377432, zeros A377436.
Not counting powers of 2 gives A377467.
The version for non-perfect-powers is A377701.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289.
A007916 lists the non-perfect-powers, differences A375706.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[Length[Select[Range[2^n,2^(n+1)-1],perpowQ]],{n,0,15}]
  • Python
    from sympy import mobius, integer_nthroot
    def A377435(n):
        if n==0: return 1
        def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        return f((1<Chai Wah Wu, Nov 05 2024

Formula

For n != 1, a(n) = A377467(n) + 1.

Extensions

a(26)-a(46) from Chai Wah Wu, Nov 05 2024

A377701 Number of non-perfect-powers x in the range 2^n < x < 2^(n+1).

Original entry on oeis.org

0, 1, 3, 6, 13, 29, 59, 121, 248, 501, 1008, 2024, 4064, 8150, 16323, 32686, 65418, 130906, 261913, 523966, 1048123, 2096517, 4193412, 8387355, 16775449, 33551945, 67105359, 134212792, 268428497, 536861096, 1073727974, 2147464110, 4294939718, 8589895659
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.
Also the number of non-perfect-powers with n bits.

Examples

			The non-perfect-powers in each range (rows):
   .
   3
   5  6  7
  10 11 12 13 14 15
  17 18 19 20 21 22 23 24 26 28 29 30 31
Their binary expansions (columns):
  .  11  101  1010  10001
         110  1011  10010
         111  1100  10011
              1101  10100
              1110  10101
              1111  10110
                    10111
                    11000
                    11010
                    11100
                    11101
                    11110
                    11111
		

Crossrefs

The union of all numbers counted is A007916.
For squarefree numbers we have A077643.
For prime-powers we have A244508.
For primes instead of powers of 2 we have A377433, ones A029707.
For perfect-powers we have A377467, for primes A377432, zeros A377436.
A000225(n) counts the interval from A000051(n) to A000225(n+1).
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[Length[Select[Range[2^n+1, 2^(n+1)-1],radQ]],{n,0,15}]
  • Python
    from sympy import mobius, integer_nthroot
    def A377701(n):
        def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        return f((1<Chai Wah Wu, Nov 06 2024

Formula

a(n) = 2^n-1-A377467(n). - Pontus von Brömssen, Nov 06 2024

Extensions

Offset corrected by, and a(16)-a(33) from Pontus von Brömssen, Nov 06 2024

A378364 Prime numbers such that the interval from the previous prime number contains a unique perfect power.

Original entry on oeis.org

2, 5, 17, 53, 67, 83, 101, 131, 149, 173, 197, 223, 227, 251, 257, 293, 331, 347, 367, 401, 443, 487, 521, 541, 577, 631, 677, 733, 787, 853, 907, 967, 1009, 1031, 1091, 1163, 1229, 1297, 1361, 1373, 1447, 1523, 1601, 1693, 1733, 1777, 1861, 1949, 2027, 2053
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2024

Keywords

Comments

Perfect-powers (A001597) are 1 and numbers with a proper integer root.

Examples

			The prime before 17 is 13, and the interval (13,14,15,16,17) contains only one perfect power 16, so 17 is in the sequence.
The prime before 29 is 23, and the interval (23,24,25,26,27,28,29) contains two perfect powers 25 and 27, so 29 is not in the sequence.
		

Crossrefs

For non prime powers we have A006512.
For zero instead of one perfect power we have the prime terms of A345531.
The indices of these primes are the positions of 1 in A377432.
The indices of these primes are 1 + A377434(n-1).
For more than one perfect power see A377466.
Swapping "prime" with "perfect power" gives A378374.
For next instead of previous prime we have A379154.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A081676 gives the greatest perfect power <= n.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[1000],PrimeQ[#]&&Length[Select[Range[NextPrime[#,-1],#],perpowQ]]==1&]

A379154 Prime numbers p such that the interval from p to the next prime number contains a unique perfect power.

Original entry on oeis.org

3, 13, 47, 61, 79, 97, 127, 139, 167, 193, 211, 223, 241, 251, 283, 317, 337, 359, 397, 439, 479, 509, 523, 571, 619, 673, 727, 773, 839, 887, 953, 997, 1021, 1087, 1153, 1223, 1291, 1327, 1367, 1439, 1511, 1597, 1669, 1723, 1759, 1847, 1933, 2017, 2039, 2113
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root.

Examples

			The prime after 13 is 17, and the interval (13,14,15,16,17) contains only one perfect power 16, so 13 is in the sequence.
		

Crossrefs

The indices of these primes are one plus the positions of 1 in A377432.
For zero instead of one perfect power we have the primes indexed by A377436.
The indices of these primes are A377434.
Swapping "prime" with "perfect power" gives A378355, indices A378368.
For previous instead of next prime we have A378364.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A081676 gives the greatest perfect power <= n.
A116086 gives perfect powers with no primes between them and the next perfect power.
A366833 counts prime powers between primes, see A053607, A304521.
A377468 gives the least perfect power > n.

Programs

  • Maple
    N:= 10^4: # to get all entries <= N
    S:={seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}:
    S:= sort(convert(S,list)):
    J:= select(i -> nextprime(S[i]) < S[i+1] and prevprime(S[i]) > S[i-1], [$2..nops(S)-1]):
    J:= [1,op(J)]:
    map(prevprime, S[J]); # Robert Israel, Jan 19 2025
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[1000],PrimeQ[#]&&Length[Select[Range[#,NextPrime[#]],perpowQ]]==1&]
  • PARI
    is_a379154(n) = isprime(n) && #select(x->ispower(x), [n+1..nextprime(n+1)-1])==1 \\ Hugo Pfoertner, Dec 19 2024

Formula

a(n) = A151799(A378364(n+1)).

A377043 The n-th perfect-power A001597(n) minus the n-th power of a prime A000961(n).

Original entry on oeis.org

0, 2, 5, 5, 11, 18, 19, 23, 25, 36, 48, 64, 81, 98, 100, 101, 115, 138, 164, 179, 184, 200, 209, 240, 271, 284, 300, 336, 374, 413, 439, 450, 495, 542, 587, 632, 683, 738, 793, 852, 887, 903, 964, 1029, 1097, 1165, 1194, 1230, 1295, 1370, 1443, 1518, 1561
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root.

Crossrefs

Excluding 1 from the powers of primes gives A377044.
A000015 gives the least prime-power >= n.
A031218 gives the greatest prime-power <= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A025475 lists numbers that are both a perfect-power and a prime-power.
A080101 counts prime-powers between primes (exclusive).
A106543 lists numbers that are neither a perfect-power nor a prime-power.
A131605 lists perfect-powers that are not prime-powers.
A246655 lists the prime-powers, complement A361102 (differences A375708).
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    per=Select[Range[1000],perpowQ];
    per-NestList[NestWhile[#+1&,#+1,!PrimePowerQ[#]&]&,1,Length[per]-1]
  • Python
    from sympy import mobius, primepi, integer_nthroot
    def A377043(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        def g(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        return bisection(f,n,n)-bisection(g,n,n) # Chai Wah Wu, Oct 27 2024

Formula

a(n) = A001597(n) - A000961(n).

A377044 The n-th perfect-power A001597(n) minus the n-th prime-power A246655(n).

Original entry on oeis.org

-1, 1, 4, 4, 9, 17, 18, 21, 23, 33, 47, 62, 77, 96, 98, 99, 113, 137, 159, 175, 182, 196, 207, 236, 265, 282, 297, 333, 370, 411, 433, 448, 493, 536, 579, 628, 681, 734, 791, 848, 879, 899, 962, 1028, 1094, 1159, 1192, 1220, 1293, 1364, 1437, 1514, 1559, 1591
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root.

Crossrefs

Including 1 with the prime-powers gives A377043.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, A093555, A376596.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A025475 lists numbers that are both a perfect-power and a prime-power.
A031218 gives the greatest prime-power <= n.
A080101 counts prime-powers between primes (exclusive).
A106543 lists numbers that are neither a perfect-power nor a prime-power.
A131605 lists perfect-powers that are not prime-powers.
A246655 lists the prime-powers, complement A361102, A375708.
Prime-power runs: A373675, min A373673, max A373674, length A174965.
Prime-power antiruns: A373576, min A120430, max A006549, length A373671.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    per=Select[Range[1000],perpowQ];
    per-NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,2,Length[per]-1]
  • Python
    from sympy import mobius, primepi, integer_nthroot
    def A377044(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        def g(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        return bisection(f,n,n)-bisection(g,n,n) # Chai Wah Wu, Oct 27 2024

Formula

a(n) = A001597(n) - A246655(n).

A378617 First differences of A378249 (next perfect power after prime(n)).

Original entry on oeis.org

0, 4, 0, 8, 0, 9, 0, 0, 7, 0, 17, 0, 0, 0, 15, 0, 0, 17, 0, 0, 0, 19, 0, 0, 21, 0, 0, 0, 0, 7, 16, 0, 0, 25, 0, 0, 0, 0, 27, 0, 0, 0, 0, 20, 0, 0, 9, 18, 0, 0, 0, 0, 13, 33, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 19, 0, 18, 0, 0, 0, 39, 0, 0, 0, 0, 0, 41, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2024

Keywords

Comments

This is the next perfect power after prime(n+1), minus the next perfect power after prime(n).
Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Crossrefs

Positions of positives are A377283.
Positions of zeros are A377436.
The restriction to primes has first differences A377468.
A version for nonsquarefree numbers is A377784, differences of A377783.
The opposite is differences of A378035 (restriction of A081676).
First differences of A378249, run-lengths A378251.
Without zeros we have differences of A378250.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A377432 counts perfect powers between primes.
A378356 - 1 gives next prime after perfect powers, union A378365 - 1.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Table[NestWhile[#+1&,Prime[n],Not@*perpowQ],{n,100}]//Differences
Previous Showing 21-28 of 28 results.