cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A187823 Primes of the form (p^x - 1)/(p^y - 1), where p is prime, y > 1, and y is the largest proper divisor of x.

Original entry on oeis.org

5, 17, 73, 257, 757, 65537, 262657, 1772893, 4432676798593, 48551233240513, 378890487846991, 3156404483062657, 17390284913300671, 280343912759041771, 319913861581383373, 487014306953858713, 5559917315850179173, 7824668707707203971, 8443914727229480773, 32564717507686012813
Offset: 1

Views

Author

Bernard Schott, Dec 27 2012

Keywords

Comments

Complement of A023195 relative to A003424.
Only eight primes of this form don't exceed 1.275*10^10 (see Bateman and Stemmler):
(1) three of the form (p^9 - 1)/(p^3 - 1): 73 (p=2), 757 (p=3), 1772893 (p=11);
(2) four of the form (2^x - 1)/(2^y - 1) with x = 2y: 5 (x=4), 17 (x=8), 257 (x=16), 65537 (x=32); and
(3) the prime 262657 = (2^27 - 1)/(2^9 - 1).
Some of these prime numbers are not Brazilian, these are Fermat primes > 3: 5, 17, 257, 65537, so they are in A220627.
The other primes are Brazilian so they are in A085104, example: (p^9 - 1)/(p^3 - 1) = 111_{p^3} with 73 = 111_8, 757 = 111_27, 1772893 = 111_1331, also 262657 = 111_512 [See section V.4 of Quadrature article in Links] (comment improved in Mar 03 2023).
Comments from Don Reble, Jul 28 2022 (Start)
This is an easy sequence that looks hard.
Note that x must be a power of a prime; otherwise (p^x-1)/(p^y-1) has too many cyclotomic factors.
Almost all values are (p^9-1)/(p^3-1). The exceptions below 10^45
are the Fermat primes 5, 17, 257, 65537 and also
262657, 4432676798593, 5559917315850179173,
227376585863531112677002031251,
467056170954468301850494793701001,
36241275390490156321975496980895092369525753,
284661951906193731091845096405947222295673201 (see examples).
(End)

Examples

			5 = (2^4 - 1)/(2^2 - 1)= 11_{2^2} = 11_4.
17 = (2^8 - 1)/(2^4 - 1) = 11_{2^4} = 11_16.
257 = (2^16 - 1)/(2^8 - 1) = 11_{2^8} = 11_256.
757 = (3^9 - 1)/(3^3 - 1) = 111_{3^3} = 111_27.
262657 = (2^27 - 1)/(2^9 - 1) = 111_{2^9} = 111_512.
655357 = (2^32 - 1)/(2^16 - 1) = 11_{2^16} = 11_655356.
4432676798593 = (2^49 - 1)/(2^7 - 1) = 1111111_{2^7} = 1111111_128.
5559917315850179173 = (11^27 - 1)/(11^9 - 1) = 111_{11^3} = 111_1331.
227376585863531112677002031251 = (5^49 - 1)/(5^7 - 1) = 1111111_{5^7}.
467056170954468301850494793701001 = (43^25 - 1)/(43^5 - 1) = 11111_{43^5}.
36241275390490156321975496980895092369525753 = (263^27 - 1)/(263^9 - 1).
284661951906193731091845096405947222295673201 = (167^25 - 1)/(167^5 - 1).
		

Crossrefs

Equals A003424 \ A023195.

Extensions

a(9)-a(16) from Don Reble, Jul 28 2022
a(17)-a(20) from Don Reble, Mar 21 2023

A248963 Prime powers p^m for which sigma(p^2m) is not prime.

Original entry on oeis.org

1, 7, 9, 11, 13, 16, 19, 23, 25, 29, 31, 32, 37, 43, 47, 53, 61, 67, 73, 79, 81, 83, 97, 103, 107, 109, 113, 121, 127, 128, 137, 139, 149, 151, 157, 163, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 257, 263, 269, 271, 277, 281, 283, 307, 311, 313, 317, 331
Offset: 1

Views

Author

M. F. Hasler, Oct 18 2014

Keywords

Comments

sigma(x) cannot be prime unless x is a square of a prime power, x = p^2m, cf. A055638 and A023194. This sequence lists the complement: prime powers whose square does not have a prime sum of divisors.
Although generally 1 is not considered a prime power, it seemed logical for various good reasons to include the initial term a(1)=1.

Crossrefs

Programs

  • PARI
    for(n=1,999,isprimepower(n)||next;isprime(sigma(n^2))||print1((n)","))

Formula

A248963 = A000961 \ A055638, i.e., the complement of A055638 in A000961.

A331036 Odd values of the sum-of-divisors function sigma (A000203), listed by increasing size and with multiplicity.

Original entry on oeis.org

1, 3, 7, 13, 15, 31, 31, 39, 57, 63, 91, 93, 121, 127, 133, 171, 183, 195, 217, 255, 307, 363, 381, 399, 399, 403, 403, 465, 511, 549, 553, 741, 781, 819, 847, 855, 871, 921, 931, 961, 993, 1023, 1093, 1143, 1209, 1281, 1407, 1651, 1659, 1723, 1729, 1767, 1767, 1815, 1893, 1953
Offset: 1

Views

Author

M. F. Hasler, Jan 08 2020

Keywords

Comments

See A060657 for the range (without repeated terms) and A152677 for the subsequence of odd values in A000203.

Crossrefs

Cf. A060657, A023195 (subset of primes), A152677 (subsequence of odd values in A000203), A300869 (repeated terms).

Programs

  • Maple
    N:= 2000: # for terms <= N
    Res:= NULL:
    for m from 1 to floor(sqrt(N)) by 2 do
      sm:= numtheory:-sigma(m^2);
      for k from 1 to floor(log[2](N/sm+1)) do
        v:= sm*(2^k-1);
        if v <= N then Res:= Res, v; count:= count+1 fi;
      od
    od:
    sort([Res]); # Robert Israel, Jan 14 2020
  • Mathematica
    Sort@ Select[DivisorSigma[1, Range@ 2000], OddQ[#] && # < 2000 &] (* Giovanni Resta, Jan 08 2020 *)
  • PARI
    list(lim)=select(k->k<=lim, vecsort(apply(sigma, concat(vector(sqrtint(lim\1), i, i^2), vector(sqrtint(lim\2), i, 2*i^2))))) \\ Charles R Greathouse IV, Feb 15 2013 [originally added in A152677]

A377927 Numbers k such that 4^sigma(k) - k is a prime.

Original entry on oeis.org

1, 5, 17, 57, 675, 1329, 1425, 3803, 39617
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Nov 11 2024

Keywords

Examples

			17 is in the sequence because 4^sigma(17) - 17 = 4^18 - 17 = 68719476719 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10000] | IsPrime((4^SumOfDivisors(n)) - n)];
  • Mathematica
    a[n_] := Select[Range@ n, PrimeQ[4^DivisorSigma[1, #] - #] &]; a[20000]
    DeleteCases[ParallelTable[If[PrimeQ[4^DivisorSigma[1,k]-k],k,n],{k,1,10^4}],n]

Extensions

a(9) from Michael S. Branicky, Nov 11 2024

A243765 Numbers that have all their divisors in A002191 (possible values for sigma(n), A000203).

Original entry on oeis.org

1, 3, 7, 13, 31, 39, 91, 93, 127, 217, 307, 381, 403, 921, 961, 1093, 1209, 1651, 1723, 2149, 2801, 2821, 3279, 3541, 3937, 3991, 4953, 5113, 5169, 7651, 8011, 8191, 8403, 9517, 10303, 10623, 11811, 11973, 12061, 12493, 15339, 17293, 19531, 19607, 22399
Offset: 1

Views

Author

Michel Marcus, Jun 10 2014

Keywords

Comments

Since 2 does not belong to A002191, all terms are odd.
All primes p that are in A023195 (Prime numbers that are the sum of the divisors of some n), are also in this sequence; and the prime factors of all terms can only belong to A023195.
Up to 10^7, only one term is a prime power: 961=31^2 (being a square, see A038688, A228061 and A243810).

Examples

			The divisors of 3 are 1 and 3 that both belong to A002191, 1 as sigma(1) and 3 as sigma(2).
The divisors of 39 are 1, 3, 13 and 39 all of which belong to A002191, 13 as sigma(9) 39 as sigma(18).
		

Crossrefs

Cf. A045572 (analog sequence with the sum of proper divisors instead).

Programs

  • Maple
    N:= 10^6: # to get all terms up to N
    A002191:= select(`<=`,{seq(numtheory[sigma](i),i=1..N)},N):
    A243765:= select(t -> numtheory[divisors](t) subset A002191, A002191); # Robert Israel, Jun 16 2014
  • PARI
    list(lim) = select(n->n<=lim, Set(vector(lim\=1, n, sigma(n))));
    isok(n, lists) = {fordiv (n, d, if (!vecsearch(lists, d), return(0))); return(1);}
    lista(nn) = {lists = list(nn); for(n=1, nn, if (isok(n, lists), print1(n, ", ")););}

A292446 Numbers k such that sigma((k + 1) / 2) is a prime q.

Original entry on oeis.org

3, 7, 17, 31, 49, 127, 577, 1457, 3361, 4801, 6961, 8191, 10081, 15841, 20401, 31249, 34321, 55777, 57121, 59857, 131071, 167041, 171697, 293377, 524287, 559681, 916657, 982801, 1062881, 1104097, 1158241, 1195057, 1367857, 1407841, 1414561, 1468897, 1659841
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2017

Keywords

Comments

Corresponding values of primes q are in A062700.
Prime terms are in A292447.
Mersenne primes p = 2^k - 1 (A000668) are terms: sigma((p + 1) / 2) = sigma((2^k - 1 + 1) / 2) = sigma(2^(k - 1)) = 2^k - 1.
This sequence also has terms of the form p^(q-1) where p and q are odd primes, i.e., A002315(1)^2 = 7^2 and A002315(3)^2 = 239^2. Terms that are not squarefree are 49, 55777, 57121, 167041, 2789521, 50060017, ... - Altug Alkan, Oct 02 2017

Examples

			49 is a term because sigma((49 + 1) / 2) = sigma(25) = 31 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^8] | IsOdd(n) and IsPrime(SumOfDivisors((n+1) div 2))];
    
  • Mathematica
    Select[Range[1,166*10^4,2],PrimeQ[DivisorSigma[1,(#+1)/2]]&] (* Harvey P. Dale, Jun 22 2022 *)
  • PARI
    isok(n) = (n%2) && isprime(sigma((n+1)/2)); \\ Michel Marcus, Sep 16 2017

Formula

a(n) = 2*A023194(n) - 1.

A377786 Numbers k such that 5^sigma(k) - k is a prime.

Original entry on oeis.org

4, 524, 7206, 11156
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Nov 11 2024

Keywords

Examples

			4 is in the sequence because 5^sigma(4) - 4 = 5^7 - 4 = 78121 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10000] | IsPrime((5^SumOfDivisors(n)) - n)];
  • Mathematica
    a[n_] := Select[Range@ n, PrimeQ[5^DivisorSigma[1, #] - #] &]; a[20000]
    DeleteCases[ParallelTable[If[PrimeQ[5^DivisorSigma[1,k]-k],k,n],{k,1,10^4}],n]

Extensions

a(4) from Michael S. Branicky, Nov 11 2024

A378512 Numbers k such that 6^sigma(k) - k is a prime.

Original entry on oeis.org

1, 7, 13, 77, 395, 2867, 3959, 5023
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Nov 29 2024

Keywords

Comments

a(9) > 10^5. - Michael S. Branicky, Dec 01 2024

Examples

			7 is in the sequence because 6^sigma(7) - 7 = 6^8 - 7 = 1679609 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10000] | IsPrime((6^SumOfDivisors(n)) - n)];
    
  • Mathematica
    a[n_] := Select[Range@ n, PrimeQ[6^DivisorSigma[1, #] - #] &]; a[20000]
    DeleteCases[ParallelTable[If[PrimeQ[6^DivisorSigma[1,k]-k],k,n],{k,1,10^4}],n]
  • PARI
    isok(k) = ispseudoprime(6^sigma(k) - k); \\ Michel Marcus, Dec 09 2024
Previous Showing 21-28 of 28 results.