cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A363738 Number of ordered partitions of n into cubes > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 1, 0, 0, 5, 0, 0, 3, 0, 2, 0, 0, 6, 0, 0, 6, 0, 3, 0, 0, 7, 0, 0, 10, 0, 4, 1, 0, 8, 0, 0, 15, 0, 5, 4, 0, 11, 0, 0, 21, 0, 6, 10, 0, 16, 0, 0, 28, 0, 7, 20, 0, 23
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2023

Keywords

Comments

This sequence is different from A278929.

Examples

			a(43) = 3 because we have [27, 8, 8], [8, 27, 8] and [8, 8, 27].
		

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, ispower(j, 3)*v[i-j+1])); v;

Formula

G.f.: 1/(1 - Sum_{k>=2} x^(k^3)).
a(0) = 1; a(n) = Sum_{k=2..n} A010057(k) * a(n-k).

A294335 Number of compositions (ordered partitions) of n into cubes dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 2, 1, 1, 1, 1, 345, 1, 1, 1, 1, 1, 1, 1, 1824, 1, 1, 1, 1, 1, 1, 1, 9661, 1, 1, 1, 1, 1, 30, 1, 51284, 1, 1, 1, 1, 1, 1, 1, 272334, 1, 1, 1, 1, 1, 1, 1, 1445995, 1, 1, 1, 1, 1, 1, 1, 7677250, 463, 1, 1, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 28 2017

Keywords

Examples

			a(16) = 11 because 16 has 5 divisors {1, 2, 4, 8, 16} among which 2 are cubes {1, 8} therefore we have [8, 8], [8, 1, 1, 1, 1, 1, 1, 1, 1], [1, 8, 1, 1, 1, 1, 1, 1, 1], [1, 1, 8, 1, 1, 1, 1, 1, 1], [1, 1, 1, 8, 1, 1, 1, 1, 1], [1, 1, 1, 1, 8, 1, 1, 1, 1], [1, 1, 1, 1, 1, 8, 1, 1, 1], [1, 1, 1, 1, 1, 1, 8, 1, 1], [1, 1, 1, 1, 1, 1, 1, 8, 1], [1, 1, 1, 1, 1, 1, 1, 1, 8] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] == 0 && IntegerQ[k^(1/3)]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 85}]

Formula

a(m)=1 when m is cubefree (A004709) and a(m)<>1 when m is not cubefree (A046099). - Michel Marcus, Oct 29 2017

A301742 a(n) = [x^n] 1/(1 - n*Sum_{k>=1} x^(k^3)).

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777224, 387420651, 10000003000, 285311729175, 8916101692416, 302875135553107, 11112007563452544, 437893910883984375, 18446744692184842496, 827240282046275783406, 39346408782249049076832, 1978419682220092642678901, 104857601064960000960000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 26 2018

Keywords

Comments

Number of compositions (ordered partitions) of n into cubes of n kinds.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - n Sum[x^k^3, {k, 1, n}]), {x, 0, n}], {n, 0, 20}]
Previous Showing 21-23 of 23 results.