cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-93 of 93 results.

A348014 Triangle, read by rows, with row n forming the coefficients in Product_{k=0..n} (1 + k^k*x).

Original entry on oeis.org

1, 1, 1, 1, 5, 4, 1, 32, 139, 108, 1, 288, 8331, 35692, 27648, 1, 3413, 908331, 26070067, 111565148, 86400000, 1, 50069, 160145259, 42405161203, 1216436611100, 5205269945088, 4031078400000
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2021

Keywords

Examples

			Triangle begins:
  1;
  1,    1;
  1,    5,      4;
  1,   32,    139,      108;
  1,  288,   8331,    35692,     27648;
  1, 3413, 908331, 26070067, 111565148, 86400000;
		

Crossrefs

Column k=1 gives A001923.
The diagonal of the triangle is A002109.

Programs

  • PARI
    T(n, k) = if(k==0, 1, if(k==n, prod(j=1, n, j^j), T(n-1, k)+n^n*T(n-1, k-1)));
    
  • PARI
    row(n) = Vecrev(prod(k=1, n, 1+k^k*x));

Formula

T(0,0) = 1; T(n,k) = T(n-1,k) + n^n * T(n-1,k-1).

A371763 Triangle read by rows: Trace of the Akiyama-Tanigawa algorithm for powers x^2.

Original entry on oeis.org

0, 1, 1, 5, 6, 4, 13, 18, 15, 9, 29, 42, 39, 28, 16, 61, 90, 87, 68, 45, 25, 125, 186, 183, 148, 105, 66, 36, 253, 378, 375, 308, 225, 150, 91, 49, 509, 762, 759, 628, 465, 318, 203, 120, 64, 1021, 1530, 1527, 1268, 945, 654, 427, 264, 153, 81
Offset: 0

Views

Author

Peter Luschny, Apr 15 2024

Keywords

Comments

The Akiyama-Tanigawa is a sequence-to-sequence transformation AT := A -> B. If A(n) = 1/(n + 1) then B(n) are the Bernoulli numbers. Tracing the algorithm generates a triangle where the right edge is sequence A and the left edge is its transform B.
Here we consider the sequence A(n) = n^2 that is transformed into sequence B(n) = |A344920(n)|. The case A(n) = n^3 is A371764. Sequence [1, 1, 1, ...] generates A023531 and sequence [0, 1, 2, 3, ...] generates A193738.
In their general form, the AT-transforms of the powers are closely related to the poly-Bernoulli numbers A099594 and generate the rows of the array A371761.

Examples

			Triangle starts:
0:                  0
1:               1,   1
2:             5,   6,   4
3:          13,  18,  15,   9
4:        29,  42,  39,  28,  16
5:      61,  90,  87,  68,  45,  25
6:    125, 186, 183, 148, 105,  66, 36
7:  253, 378, 375, 308, 225, 150, 91, 49
		

Crossrefs

Family of triangles: A023531 (n=0), A193738 (n=1), this triangle (n=2), A371764 (n=3).

Programs

  • Julia
    function ATPtriangle(k::Int, len::Int)
        A = Vector{BigInt}(undef, len)
        B = Vector{Vector{BigInt}}(undef, len)
        for n in 0:len-1
            A[n+1] = n^k
            for j = n:-1:1
                A[j] = j * (A[j+1] - A[j])
            end
            B[n+1] = A[1:n+1]
        end
        return B
    end
    for (n, row) in enumerate(ATPtriangle(2, 9))
        println("$(n-1): ", row)
    end
  • Maple
    ATProw := proc(k, n) local m, j, A;
       for m from 0 by 1 to n do
          A[m] := m^k;
          for j from m by -1 to 1 do
             A[j - 1] := j * (A[j] - A[j - 1])
       od od; convert(A, list) end:
    ATPtriangle := (p, len) -> local k;
         ListTools:-Flatten([seq(ATProw(p, k), k = 0..len)]):
    ATPtriangle(2, 9);
  • Mathematica
    T[n,k] := If[n==k, n^2, (k+1)*(2^(n-k)*(k+2)-3)]; Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Apr 19 2024 *)
  • Python
    # See function ATPowList in A371761.
    

Formula

T(n, k) = n^2 if n=k, otherwise (k + 1)*(2^(n - k)*(k + 2) - 3). - Detlef Meya, Apr 19 2024

A375466 Array read by ascending antidiagonals of triangles read by rows: the coefficients of the polynomials n! * m^(n-k) * x^k * A094587(n, k), for m >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 2, 0, 1, 4, 1, 8, 2, 1, 1, 5, 1, 18, 4, 1, 0, 1, 6, 1, 32, 6, 1, 6, 0, 1, 7, 1, 50, 8, 1, 48, 6, 0, 1, 8, 1, 72, 10, 1, 162, 24, 3, 1, 1, 9, 1, 98, 12, 1, 384, 54, 6, 1, 0, 1, 10, 1, 128, 14, 1, 750, 96, 9, 1, 24, 0
Offset: 0

Views

Author

Peter Luschny, Aug 17 2024

Keywords

Examples

			Sequence of polynomials P(n, m) for n = 0, 1, 2, ...:
  [0]   1;
  [1]   1*m   +         x;
  [2]   2*m^2 +     2*m*x +         x^2;
  [3]   6*m^3 +   6*m^2*x +     3*m*x^2 +         x^3;
  [4]  24*m^4 +  24*m^3*x +  12*m^2*x^2 +     4*m*x^3 +        x^4;
  [5] 120*m^5 + 120*m^4*x +  60*m^3*x^2 +  20*m^2*x^3 +    5*m*x^4 +     x^5;
  [6] 720*m^6 + 720*m^5*x + 360*m^4*x^2 + 120*m^3*x^3 + 30*m^2*x^4 + 6*m*x^5 + x^6;
  ...
Array of the coefficients of the polynomials for m = 0, 1, 2, ...:
  [0] 1, 0, 1,  0,  0, 1,    0,   0,  0, 1,     0,    0,   0,  0, 1, ...  A023531
  [1] 1, 1, 1,  2,  2, 1,    6,   6,  3, 1,    24,   24,  12,  4, 1, ...  A094587
  [2] 1, 2, 1,  8,  4, 1,   48,  24,  6, 1,   384,  192,  48,  8, 1, ...
  [3] 1, 3, 1, 18,  6, 1,  162,  54,  9, 1,  1944,  648, 108, 12, 1, ...
  [4] 1, 4, 1, 32,  8, 1,  384,  96, 12, 1,  6144, 1536, 192, 16, 1, ...
  [5] 1, 5, 1, 50, 10, 1,  750, 150, 15, 1, 15000, 3000, 300, 20, 1, ...
  [6] 1, 6, 1, 72, 12, 1, 1296, 216, 18, 1, 31104, 5184, 432, 24, 1, ...
  ...
Seen as triangle:
  1;
  1, 0;
  1, 1, 1;
  1, 2, 1,  0;
  1, 3, 1,  2,  0;
  1, 4, 1,  8,  2, 1;
  1, 5, 1, 18,  4, 1,   0;
  1, 6, 1, 32,  6, 1,   6,  0;
  1, 7, 1, 50,  8, 1,  48,  6, 0;
  1, 8, 1, 72, 10, 1, 162, 24, 3, 1;
  1, 9, 1, 98, 12, 1, 384, 54, 6, 1,  0;
		

Crossrefs

Programs

  • Maple
    # Computes the polynomials depending on the parameter m.
    P := (n, m) -> ifelse(m = 0, x^n, n! * m^n * hypergeom([-n], [-n], x/m)):
    seq(print(simplify(P(n, m))), n = 0..5);
    # Computes the array of coefficients:
    P := (n, k, m) -> (n!/k!) * m^(n-k) * x^k:
    Arow := (m, len) -> local n, k;
    seq(seq(coeff(P(n, k, m), x, k), k = 0..n), n = 0..len):
    seq(lprint(Arow(n, 4)), n = 0..6);

Formula

T(n, m, k) = [x^k] n! * m^n * hypergeom([-n], [-n], x/m), for n > 0.
Previous Showing 91-93 of 93 results.