A058166
Triangle read by rows: T(n,k) = number of labeled semigroups of order n with k idempotents.
Original entry on oeis.org
1, 4, 4, 24, 54, 35, 356, 1044, 1488, 604, 16585, 31620, 60900, 57900, 16727, 3461916, 1699290, 3345420, 4744380, 3128880, 681232, 6058301508, 265521354, 263429355, 439698420, 455785470, 222132666, 38187291
Offset: 1
1; 4,4; 24,54,35; 356,1044,1488,604; ...
A351730
Number of labeled idempotent semigroups of order n.
Original entry on oeis.org
1, 1, 4, 35, 604, 16727, 681232, 38187291, 2810370122, 261999605819
Offset: 0
A383871
Number of labeled 3-nilpotent semigroups of order n.
Original entry on oeis.org
0, 0, 6, 180, 11720, 3089250, 5944080072, 147348275209800, 38430603831264883632, 90116197775746464859791750, 2118031078806486819496589635743440, 966490887282837500134221233339527160717340, 17165261053166610940029331024343115375665769316911576, 6444206974822296283920298148689544172139277283018112679406098010
Offset: 1
- H. Jürgensen, F. Migliorini, and J. Szép, Semigroups. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest, 1991.
- Andreas Distler and James D. Mitchell, The number of nilpotent semigroups of degree 3, arXiv:1201.3529 [math.CO], 2012.
- Igor Dolinka, D. G. FitzGerald, and James D. Mitchell, Semirigidity and the enumeration of nilpotent semigroups of index three, arXiv:2411.00466 [math.CO], 2024.
- Pierre A. Grillet, Counting Semigroups, Communications in Algebra, 43(2), 574-596, (2014).
- D. J. Kleitman, B. R. Rothschild, and J. H. Spencer, The number of semigroups of order n, Proc. Amer. Math. Soc. 55 (1976), 227-232.
- Index entries for sequences related to semigroups
A383885
Number of nonisomorphic 3-nilpotent semigroups of order n.
Original entry on oeis.org
0, 0, 1, 9, 118, 4671, 1199989, 3661522792, 105931872028455, 24834563582168716305, 53061406576514239124327751, 2017720196187069550262596208732035, 2756576827989210680367439732667802738773384, 73919858836708511517426763179873538289329852786253510, 29599937964452484359589007277447538854227891149791717673581110642
Offset: 1
- H. Jürgensen, F. Migliorini, and J. Szép, Semigroups. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest, 1991.
- Andreas Distler and James D. Mitchell, The number of nilpotent semigroups of degree 3, arXiv:1201.3529 [math.CO], 2012.
- Igor Dolinka, D. G. FitzGerald, and James D. Mitchell, Semirigidity and the enumeration of nilpotent semigroups of index three, arXiv:2411.00466 [math.CO], 2024.
- Pierre A. Grillet, Counting Semigroups, Communications in Algebra, 43(2), 574-596, (2014).
- D. J. Kleitman, B. R. Rothschild, and J. H. Spencer, The number of semigroups of order n, Proc. Amer. Math. Soc. 55 (1976), 227-232.
- Index entries for sequences related to semigroups
A383886
Number of 3-nilpotent semigroups, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
Original entry on oeis.org
0, 0, 1, 8, 84, 2660, 609797, 1831687022, 52966239062973, 12417282095522918811, 26530703289252298687053072, 1008860098093547692911901804990610, 1378288413994605341053354105969660808031163, 36959929418354255758713676933402538920157765946956889, 14799968982226242179794503639146983952853044950740907666303436922
Offset: 1
- H. Jürgensen, F. Migliorini, and J. Szép, Semigroups. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest, 1991.
- Andreas Distler and James D. Mitchell, The number of nilpotent semigroups of degree 3, arXiv:1201.3529 [math.CO], 2012.
- Igor Dolinka, D. G. FitzGerald, and James D. Mitchell, Semirigidity and the enumeration of nilpotent semigroups of index three, arXiv:2411.00466 [math.CO], 2024.
- Pierre A. Grillet, Counting Semigroups, Communications in Algebra, 43(2), 574-596, (2014).
- D. J. Kleitman, B. R. Rothschild, and J. H. Spencer, The number of semigroups of order n, Proc. Amer. Math. Soc. 55 (1976), 227-232.
- Index entries for sequences related to semigroups
A118581
Number of nonisomorphic semigroups of order <= n.
Original entry on oeis.org
1, 2, 7, 31, 219, 2134, 30768, 1658440, 3685688857, 105981863625149
Offset: 0
a(7) = 1658440 = 1 + 1 + 5 + 24 + 188 + 1915 + 28634 + 1627672.
Original entry on oeis.org
1, 3, 10, 45, 273, 2510, 34069, 1703066
Offset: 1
Cf.
A001329,
A001423,
A001426,
A023814,
A027851,
A029851,
A058108,
A058132,
A058133,
A063756,
A079173,
A118581.
A256411
Triangle read by rows: T(n,k) (1 <= k <= n) = number of ascendingly generated semigroups of order n with k generators.
Original entry on oeis.org
1, 2, 8, 3, 37, 113, 4, 145, 1257, 3492, 5, 452, 9020, 67394, 183732, 6, 1374, 60826, 938194, 6398792, 17061118, 7, 3933, 356023, 30492722, 466578957, 3032145644, 7743056064
Offset: 1
Triangle begins:
1;
2, 8;
3, 37, 113;
4, 145, 1257, 3492;
5, 452, 9020, 67394, 183732;
6, 1374, 60826, 938194, 6398792, 17061118;
7, 3933, 356023, 30492722, 466578957, 3032145644, 7743056064;
...
A084965
Number of labeled totally ordered semigroups with n elements.
Original entry on oeis.org
1, 1, 6, 44, 386, 3852, 42640, 516791, 6817378, 98091071, 1569786228
Offset: 0
A186117
Number of nonisomorphic semigroups of order n minus number of groups of order n.
Original entry on oeis.org
0, 4, 23, 186, 1914, 28632, 1627671, 3684030412, 105978177936290
Offset: 1
a(1) = 0 because there are unique groups and semigroups of order 1, so 1 - 1 = 0.
a(2) = 4 because there are 5 semigroups of order 2 groups and a unique group of order 2, so 5 - 1 = 4.
Comments