cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A111859 Number of numbers m <= n such that 9 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Examples

			a(10) = 0, a(100) = 5, a(1000) = 81, a(10000) = 950.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    Accumulate[Array[Boole[Mod[Floor[10*Sqrt[#]], 10] == 9] &, 100]] (* Paolo Xausa, May 17 2024 *)

Formula

For n > 1: if A023961(n) = 9 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Limit_{n->oo} a(n)/n = 1/10.

A111850 Number of numbers m <= n such that 0 equals the first digit after decimal point of square root of n in decimal representation.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

For n > 1: if A023961(n)=0 then a(n) = a(n-1) + 1, otherwise a(n) = a(n-1).
Lim_{n->infinity} a(n)/n = 1/10.

Examples

			a(10) = 3, a(100) = 15, a(1000) = 118, a(10000) = 1050.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Two, Chap. 4, Sect. 4, Problem 178.

Crossrefs

Programs

  • Mathematica
    zd[n_]:=Module[{c=RealDigits[Sqrt[n],10,10],f},f=Last[c]+1;If[First[c][[f]]==0,1,0]]; Accumulate[Array[zd,90]] (* Harvey P. Dale, Feb 01 2012 *)

A343739 a(n) is the last digit to appear in sqrt(n) (or -1 if n is a square).

Original entry on oeis.org

-1, 8, 4, -1, 5, 6, 8, 5, -1, 4, 8, 2, 8, 0, 5, -1, 8, 3, 1, 0, 3, 3, 6, 0, -1, 6, 8, 4, 9, 8, 9, 7, 1, 6, 2, -1, 4, 3, 1, 1, 9, 1, 9, 1, 1, 4, 7, 4, -1, 9, 0, 4, 6, 0, 3, 0, 1, 4, 3, 0, 3, 2, 6, -1, 1, 7, 0, 7, 5, 1, 0, 6, 9, 9, 9, 5, 5, 9, 2, 3, -1, 2, 6, 2
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 05 2021

Keywords

Comments

For the digit position in sqrt(n) at which the digit a(n) first appears, see A343740.

Examples

			a(2)=8 because 8 is the last digit to appear in sqrt(2) = 1.414213562373095048...;
a(24)=0 because 0 is the last digit to appear in sqrt(24) = 4.898979485566356196394568149411782783931894961313340...
		

Crossrefs

Programs

  • Mathematica
    Table[If[IntegerQ@ Sqrt@ n, -1, Function[s, FirstPosition[#, Max@ #][[1]] - 1 &@ Array[FirstPosition[s, #][[1]] &, 10, 0]]@ RealDigits[Sqrt[n], 10, 120][[1]]], {n, 84}] (* Michael De Vlieger, Jul 06 2021 *)

Formula

a(100^q*n) = a(n), q > 0. - Bernard Schott, Jul 24 2021

A343740 a(n) is the digit position of the first appearance of the last digit to appear in sqrt(n) (or -1 if n is a square).

Original entry on oeis.org

-1, 19, 23, -1, 37, 39, 45, 36, -1, 27, 17, 25, 15, 36, 19, -1, 20, 36, 25, 37, 28, 13, 27, 52, -1, 39, 17, 38, 27, 26, 17, 23, 24, 37, 19, -1, 25, 26, 26, 41, 58, 57, 25, 12, 25, 22, 24, 19, -1, 33, 48, 23, 41, 49, 23, 32, 32, 23, 30, 19, 17, 31, 27, -1, 24
Offset: 1

Views

Author

Jon E. Schoenfield, Jul 05 2021

Keywords

Comments

A343739(n) is the last digit to appear in the decimal expansion of sqrt(n) (or -1 if n is a square), so a(n) is the digit position of the first appearance of the digit A343739(n) in sqrt(n).
(The first digit of sqrt(n) is counted as digit position 1; the decimal point is disregarded.)

Examples

			a(2)=19 because A343739(2)=8 and the first appearance of an 8 in sqrt(2) = 1.414213562373095048... is at the 19th digit;
a(24)=52 because A343739(24)=0 and the first appearance of a 0 in sqrt(24) = 4.898979485566356196394568149411782783931894961313340... is at the 52nd digit.
		

Crossrefs

Programs

  • Mathematica
    Table[If[IntegerQ@ Sqrt@ n, -1, Function[s, Max@ Array[FirstPosition[s, #][[1]] &, 10, 0]]@ RealDigits[Sqrt[n], 10, 120][[1]]], {n, 65}] (* Michael De Vlieger, Jul 06 2021 *)

Formula

a(100^q*n) = a(n), q > 0. - Bernard Schott, Jul 29 2021

A037022 Triangle in which row n has the first n digits of sqrt(n) (truncated).

Original entry on oeis.org

1, 1, 4, 1, 7, 3, 2, 0, 0, 0, 2, 2, 3, 6, 0, 2, 4, 4, 9, 4, 8, 2, 6, 4, 5, 7, 5, 1, 2, 8, 2, 8, 4, 2, 7, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 6, 2, 2, 7, 7, 6, 6, 0, 3, 3, 1, 6, 6, 2, 4, 7, 9, 0, 3, 3, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 3, 6, 0, 5, 5, 5, 1, 2, 7, 5, 4, 6, 3, 3, 7, 4, 1, 6, 5, 7, 3
Offset: 1

Views

Author

Jonas Persson (jptmp(AT)hotmail.com), N. J. A. Sloane

Keywords

Examples

			Triangle starts:
  1;
  1, 4;
  1, 7, 3;
  2, 0, 0, 0;
  2, 2, 3, 6, 0;
  2, 4, 4, 9, 4, 8;
  2, 6, 4, 5, 7, 5, 1;
  ...
		

Crossrefs

Cf. A000196 (first column), A023961 (second column), A037023.

Programs

  • Mathematica
    row[n_] := RealDigits[Sqrt[n], 10, n][[1]]; Table[row[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 03 2016 *)

A328819 Third digit after decimal point of square root of n.

Original entry on oeis.org

0, 4, 2, 0, 6, 9, 5, 8, 0, 2, 6, 4, 5, 1, 2, 0, 3, 2, 8, 2, 2, 0, 5, 8, 0, 9, 6, 1, 5, 7, 7, 6, 4, 0, 6, 0, 2, 4, 4, 4, 3, 0, 7, 3, 8, 2, 5, 8, 0, 1, 1, 1, 0, 8, 6, 3, 9, 5, 1, 5, 0, 4, 7, 0, 2, 4, 5, 6, 6, 6, 6, 5, 4, 2, 0, 7, 4, 1, 8, 4, 0, 5, 0, 5, 9, 3, 7, 0, 3, 6, 9, 1, 3, 5, 6, 7, 8, 9, 9, 0
Offset: 1

Views

Author

Maxim Skorohodov, Oct 28 2019

Keywords

Examples

			sqrt(21) = 4.58257569..., so a(21) = 2.
		

Crossrefs

Cf. A023961 (1st digit), A111862 (2nd digit).

Programs

  • PARI
    a(n) = floor(10^3*sqrt(n)) % 10; \\ Jinyuan Wang, Nov 03 2019

Formula

a(n) = A010879(A000196(1000000*n)).

A328820 Fourth digit after decimal point of square root of n.

Original entry on oeis.org

0, 2, 0, 0, 0, 4, 7, 4, 0, 2, 6, 1, 5, 6, 9, 0, 1, 6, 8, 1, 5, 4, 8, 9, 0, 0, 1, 5, 1, 2, 7, 8, 5, 9, 0, 0, 7, 4, 9, 5, 1, 7, 4, 2, 2, 3, 6, 2, 0, 0, 4, 1, 1, 4, 1, 3, 8, 7, 1, 9, 2, 0, 2, 0, 2, 0, 3, 2, 6, 6, 1, 2, 0, 3, 2, 7, 9, 7, 1, 2, 0, 3, 4, 1, 5, 6, 3, 8, 9, 8, 3, 6, 6, 3, 7, 9, 8, 4, 8, 0
Offset: 1

Views

Author

Maxim Skorohodov, Oct 28 2019

Keywords

Examples

			sqrt(5) = 2.23606798..., so a(5) = 0.
		

Crossrefs

Formula

a(n) = A010879(A000196(100000000*n)).
Previous Showing 11-17 of 17 results.