cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A070141 Number of obtuse integer triangles with perimeter n having integral area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 1, 0, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051516(n) - A070140(n) - A024155(n).

Crossrefs

A070205 Number of acute integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Formula

a(n) = A070201(n) - A024155(n) - A070206(n).

A070206 Number of obtuse integer triangles with perimeter n having integral inradius.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A070201(n) - A024155(n) - A070205(n).

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

A070207 Expansion of (1-x-5*x^2)/(1-3*x-2*x^2-x^3).

Original entry on oeis.org

1, 2, 3, 14, 50, 181, 657, 2383, 8644, 31355, 113736, 412562, 1496513, 5428399, 19690785, 71425666, 259086967, 939803018, 3409008654, 12365718965, 44854977221, 162705378247, 590191808148, 2140841158159, 7765612469020, 28168711531526, 102178200690777
Offset: 0

Views

Author

N. J. A. Sloane, Sep 18 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A024155.

References

  • Benoit Rittaud, Elise Janvresse, Emmanuel Lesigne and Jean-Christophe Novelli, Quand les maths se font discrètes, Le Pommier, 2008 (ISBN 978-2-7465-0370-0). See pp. 42ff.

Programs

  • Magma
    I:=[1,2,3]; [n le 3 select I[n] else 3*Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 28 2015
  • Maple
    f:= gfun:-rectoproc({-a(n+3)+3*a(n+2)+2*a(n+1)+a(n), a(0) = 1, a(1) = 2, a(2) = 3},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Dec 28 2015
  • Mathematica
    CoefficientList[Series[(1-x-5x^2)/(1-3x-2x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,1},{1,2,3},40] (* Harvey P. Dale, Feb 01 2013 *)
  • PARI
    Vec((1-x-5*x^2)/(1-3*x-2*x^2-x^3) + O(x^100)) \\ Altug Alkan, Dec 27 2015
    

Formula

a(0)=1, a(1)=2, a(2)=3, a(n) = 3*a(n-1)+2*a(n-2)+a(n-3). - Harvey P. Dale, Feb 01 2013

A299706 Number of Pythagorean triples with perimeter <= 10^n.

Original entry on oeis.org

0, 17, 325, 4858, 64741, 808950, 9706567, 113236940, 1294080089, 14557915466
Offset: 1

Views

Author

Seiichi Manyama, Feb 26 2018

Keywords

Examples

			n = 2
perimeter | Pythagorean triple
-------------------------------
   12     | [ 3,  4,  5]
   30     | [ 5, 12, 13]
   24     | [ 6,  8, 10]
   56     | [ 7, 24, 25]
   40     | [ 8, 15, 17]
   36     | [ 9, 12, 15]
   90     | [ 9, 40, 41]
   60     | [10, 24, 26]
   48     | [12, 16, 20]
   84     | [12, 35, 37]
   60     | [15, 20, 25]
   90     | [15, 36, 39]
   80     | [16, 30, 34]
   72     | [18, 24, 30]
   70     | [20, 21, 29]
   84     | [21, 28, 35]
   96     | [24, 32, 40]
		

Crossrefs

Programs

  • Ruby
    def f(a, b, c, n)
      return 0 if a + b + c > n
      s = n / (a + b + c)
      s += f( a - 2 * b + 2 * c,  2 * a - b + 2 * c,  2 * a - 2 * b + 3 * c, n)
      s += f( a + 2 * b + 2 * c,  2 * a + b + 2 * c,  2 * a + 2 * b + 3 * c, n)
      s += f(-a + 2 * b + 2 * c, -2 * a + b + 2 * c, -2 * a + 2 * b + 3 * c, n)
      return s
    end
    def A299706(n)
      (1..n).map{|i| f(3, 4, 5, 10 ** i)}
    end
    p A299706(8)

A309395 Number of integer-sided triangles with sides a,b,c, max(a,b) < c, a + c = n that are right triangles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 3, 4, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 2, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 6, 1, 4
Offset: 1

Views

Author

Seiichi Manyama, Jul 28 2019

Keywords

Examples

			   n | (a,b,c)
-----+-----------------------------------------
   8 | [ 3,  4,  5]
   9 | [ 4,  3,  5]
  16 | [ 6,  8, 10]
  18 | [ 5, 12, 13], [ 8,  6, 10]
  24 | [ 9, 12, 15]
  25 | [ 8, 15, 17], [12,  5, 13]
  27 | [12,  9, 15]
  32 | [ 7, 24, 25], [12, 16, 20], [15, 8, 17]
  36 | [10, 24, 26], [16, 12, 20]
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=n\2+1, n-1, issquare(k^2-(n-k)^2))}

Formula

a(n) > 0 if and only if n is a term in A046790.
a(n^2) = floor((n-1)/2) = A004526(n-1).
Previous Showing 11-16 of 16 results.