cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A057229 a(n) = a*b = x*y with (a-b) = (x+y) = A020882(n) (a>b, a>0, b>0, x>0, y>0), gcd(a, b) = gcd(x, y) = 1.

Original entry on oeis.org

6, 30, 60, 84, 210, 210, 180, 630, 330, 504, 924, 1320, 546, 1386, 1560, 2340, 990, 2730, 840, 2574, 4620, 1224, 1716, 3570, 5610, 7140, 4290, 1710, 5016, 7956, 7980, 2730, 7854, 10374, 2310, 11970, 6630, 10920, 12540, 4080, 3036, 11856, 8970
Offset: 0

Views

Author

Naohiro Nomoto, Sep 19 2000

Keywords

Comments

The quadratics in X, X^2 - S*X -+ P, where S=A020882(n), P=A057229(n) are each factorizable into two factors, all four being distinct: X^2 - S*X - P = (X - a)*(X + b). X^2 - S*X + P = (X - x)*(X - y). - Lekraj Beedassy, Apr 30 2004
Areas of primitive Pythagorean triangles sorted on hypotenuse A020882, then on perimeter A093507. - Lekraj Beedassy, Aug 18 2006

Examples

			E.g. a(1)=6=6*1=3*2, (6-1)=(3+2)=5=A020882(1), gcd(6,1)=gcd(3,2)=1
		

Crossrefs

A105520 Sums of area and perimeter of Pythagorean triples, sorted in increasing order, including duplicates.

Original entry on oeis.org

18, 48, 60, 90, 100, 140, 144, 180, 210, 270, 280, 288, 294, 320, 360, 378, 448, 462, 480, 594, 600, 648, 660, 720, 728, 756, 858, 900, 900, 924, 980, 1008, 1008, 1078, 1080, 1120, 1170, 1210, 1260, 1344, 1496, 1530, 1530, 1568, 1584, 1584, 1680, 1700, 1728
Offset: 1

Views

Author

Alexandre Wajnberg, May 02 2005

Keywords

Examples

			a(28) = 900 = (18+80+82) + (18*80/2) for 18*18 + 80*80 = 82*82.
a(29) = 900 = (25+60+65) + (25*60/2) for 25*25 + 60*60 = 65*65.
a(32) = 1008 = (24+70+74) + (24*70/2) for 24*24 + 70*70 = 74*74.
a(33) = 1008 = (36+48+60) + (36*48/2) for 36*36 + 48*48 = 60*60.
		

Crossrefs

Programs

  • Mathematica
    L = {}; mx = 1728; Do[ Do[ If[ IntegerQ[z = Sqrt[x^2 + y^2]], v = x y/2 + x + y + z; If[v <= mx, AppendTo[L, v], Break[]]], {y, x-1}], {x, 4, 4 + (2 mx^2)^(1/3)}]; Sort@ L (* Giovanni Resta, Mar 16 2020 *)
  • Rexx
    T. = 0                        ;  S = ''
    do C = 1 to 999               ;  H = C*C
       do D = 1 to C              ;  I = D*D
          do E = 1 to D           ;  J = E*E
             if I + J < H   then  iterate E
             if I + J = H   then  do
                K = T.0 + 1       ;  T.0 = K
                P = C + D + E     ;  A = ( D * E ) / 2
                T.K = right( A + P, 6 )
                T.K = T.K '=' A '+' P '(' E '+' D '+' C ')'
             end
             leave E
          end E
       end D
    end C
    call KWIK 'T.' /* sort by A+P for area A and perimeter P */
    Y = 0
    do N = 1 to T.0 while length( S ) < 255
       X = word( T.N, 1 )         ;  say T.N
       if X <= Y   then  say 'dupe:' N - 1 N ':' Y X
       S = S || ', ' || X         ;  Y = X
    end N
    say substr( S, 3 )            /* Frank Ellermann, Mar 02 2020 */

Extensions

Corrected and extended by Frank Ellermann, Mar 02 2020

A155185 Primes in A155175.

Original entry on oeis.org

5, 13, 113, 1741, 5101, 8581, 9941, 21841, 26681, 47741, 82013, 481181, 501001, 1009621, 2356621, 2542513, 3279361, 3723721, 4277813, 7757861, 8124481, 13204661, 25311613, 30772013, 44170601, 48619661, 51521401, 52541501, 54236113, 60731221, 72902813
Offset: 1

Views

Author

Keywords

Comments

Hypotenuse C (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes. p=1,q=2,a=3,b=4,c=5=prime,s=12-+1primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[c],AppendTo[lst,c]]],{n,8!}];lst (* corrected by Ray Chandler, Feb 11 2020 *)

Extensions

Sequence corrected by Ray Chandler, Feb 11 2020

A322170 Triangle T(n, k) read by rows, n > 0 and 0 < k <= 3^(n-1): T(n, k) = A321768(n, k) * A321769(n, k) / 2.

Original entry on oeis.org

6, 30, 210, 60, 84, 1320, 630, 1560, 7140, 1386, 924, 2340, 210, 180, 4620, 2730, 10920, 45144, 7854, 7980, 23184, 2574, 5016, 63336, 26910, 49476, 242556, 50490, 25200, 57420, 4290, 3570, 34650, 12540, 14490, 79794, 18564, 5610, 10374, 504, 330, 11970, 7956
Offset: 1

Views

Author

Rémy Sigrist, Nov 29 2018

Keywords

Comments

This sequence gives the areas of the primitive Pythagorean triangles corresponding to the primitive Pythagorean triples in the tree described in A321768.
If we order the terms in this sequence and keep duplicates then we obtain A024406.

Examples

			The first rows are:
   6
   30, 210, 60
   84, 1320, 630, 1560, 7140, 1386, 924, 2340, 210
T(1,1) corresponds to the area of the triangle with sides 3, 4, 5; hence T(1, 1) = 3 * 4 / 2 = 6.
		

Crossrefs

Programs

  • PARI
    M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
    T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1, 1] * t[2, 1] / 2)

Formula

Empirically:
- T(n, 1) = A055112(n),
- T(n, (3^(n-1) + 1)/2) = A029549(n),
- T(n, 3^(n-1)) = A069072(n-1).

A105521 Sums of area and perimeter of primitive Pythagorean triples.

Original entry on oeis.org

18, 60, 100, 140, 270, 280, 294, 462, 648, 728, 756, 1078, 1080, 1210, 1496, 1530, 1584, 1768, 2028, 2090, 2574, 2772, 2860, 2990, 3150, 3588, 3910, 4550, 4624, 4680, 4950, 5434, 5670, 5984, 6498, 6960, 7140, 7548, 8330, 8398, 8432, 8436, 8820, 9568, 10098
Offset: 1

Views

Author

Alexandre Wajnberg, May 02 2005

Keywords

Crossrefs

Extensions

Corrected and extended by Harvey P. Dale, Oct 27 2018

A155186 Primes in A155171.

Original entry on oeis.org

2, 7, 29, 101, 107, 197, 227, 457, 647, 829, 1549, 1627, 2221, 2309, 2347, 2521, 2677, 2801, 3181, 3299, 3529, 3541, 3557, 3739, 3769, 4231, 4549, 4871, 4987, 5651, 5827, 5881, 6037, 6079, 6637, 6827, 7517, 7639, 7937, 9787, 11621, 12041, 12329, 13009
Offset: 1

Views

Author

Keywords

Comments

Numbers p (prime numbers only) of primitive Pythagorean triangles such that perimeters are Averages of twin prime pairs, q=p+1, a=q^2-p^2, c=q^2+p^2, b=2*p*q, s=a+b+c, s-+1 are primes.

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[p],AppendTo[lst,p]]],{n,8!}];lst

A155187 Prime numbers q of primitive Pythagorean triangles such that perimeters are averages of twin prime pairs, p+1=q(prime), a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 3, 11, 71, 227, 491, 683, 1103, 1187, 2591, 3923, 4271, 4931, 6737, 7193, 7703, 8093, 8753, 8963, 9173, 9377, 10271, 13043, 13451, 13997, 15233, 15443, 15803, 15887, 17957, 18701, 19961, 20681, 21701, 22031, 22073, 24371, 24473, 24683
Offset: 1

Views

Author

Keywords

Comments

p=1, q=2(prime), a=3, b=4, c=5, s=12-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[q],AppendTo[lst,q]]],{n,8!}];lst
Previous Showing 21-27 of 27 results.