cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A307078 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 3, 1, 2, 7, 1, 2, 4, 15, 1, 2, 3, 8, 31, 1, 2, 3, 5, 16, 63, 1, 2, 3, 4, 10, 32, 127, 1, 2, 3, 4, 6, 21, 64, 255, 1, 2, 3, 4, 5, 12, 43, 128, 511, 1, 2, 3, 4, 5, 7, 28, 86, 256, 1023, 1, 2, 3, 4, 5, 6, 14, 64, 171, 512, 2047, 1, 2, 3, 4, 5, 6, 8, 36, 136, 341, 1024, 4095
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,  1,  1,  1,  1, 1, ...
     3,   2,   2,   2,  2,  2,  2,  2, 2, ...
     7,   4,   3,   3,  3,  3,  3,  3, 3, ...
    15,   8,   5,   4,  4,  4,  4,  4, 4, ...
    31,  16,  10,   6,  5,  5,  5,  5, 5, ...
    63,  32,  21,  12,  7,  6,  6,  6, 6, ...
   127,  64,  43,  28, 14,  8,  7,  7, 7, ...
   255, 128,  86,  64, 36, 16,  9,  8, 8, ...
   511, 256, 171, 136, 93, 45, 18, 10, 9, ...
		

Crossrefs

Columns 1-6 give A126646, A000079, A024494(n+1), A038504(n+1), A133476(n+1), A119336.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+1,k*j+1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i,k*j) * binomial(n-i,k*j).

A138635 a(n) =3*a(n-3)-3*a(n-6)+2*a(n-9).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 3, 2, 6, 5, 5, 11, 10, 11, 21, 21, 22, 42, 43, 43, 85, 86, 85, 171, 171, 170, 342, 341, 341, 683, 682, 683, 1365, 1365, 1366, 2730, 2731, 2731, 5461, 5462, 5461, 10923, 10923, 10922, 21846, 21845, 21845, 43691, 43690, 43691, 87381
Offset: 0

Views

Author

Paul Curtz, May 14 2008

Keywords

Comments

As the recurrence shows, these are three interleaved sequences which obey recurrences b(n)=3*b(n-1)-3*b(n-2)+2*b(n-3), indicating that the b(n) equal their third differences.
These three sequences are A024495, A024494 (or A131708) and A024493 (or A130781).
Their starting "vectors" b(0,1,2) are 0,0,1 and 0,1,2 and 1,1,1, respectively, therefore linearly independent, such that other sequences with the same recursion as b(n) can be written as linear combinations of these.

Crossrefs

Formula

a(18*n) = 21*A133853(n).
G.f.: -x^2*(1+x^2-2*x^3+x^4-x^5+x^6)/((2*x^3-1)*(x^6-x^3+1)). - R. J. Mathar, May 17 2009

Extensions

Edited by R. J. Mathar, May 17 2009

A139468 a(n) = Sum{k=0..n} C(n,3k+1)^2.

Original entry on oeis.org

0, 1, 4, 9, 17, 50, 261, 1275, 5028, 17253, 58601, 218042, 876789, 3537847, 13783018, 52301709, 198627921, 767778786, 3010327497, 11824753551, 46200429186, 179787741723, 700285942731, 2738134757118, 10739885115573, 42164261091351, 165467386466802
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2008

Keywords

Comments

The recurrence is same as for A119363. - Vaclav Kotesovec, Mar 12 2019

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,3k+1]^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Sep 08 2018 *)

Formula

a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 12 2019

A102517 Expansion of (1+x^2)/((1-x+x^2)*(1+2*x^2)).

Original entry on oeis.org

1, 1, -1, -2, 1, 3, -2, -5, 5, 10, -11, -21, 22, 43, -43, -86, 85, 171, -170, -341, 341, 682, -683, -1365, 1366, 2731, -2731, -5462, 5461, 10923, -10922, -21845, 21845, 43690, -43691, -87381, 87382, 174763, -174763, -349526, 349525, 699051, -699050, -1398101, 1398101, 2796202, -2796203, -5592405
Offset: 0

Views

Author

Paul Barry, Jan 13 2005

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x^2)/((1-x+x^2)(1+2x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{1,-3,2,-2},{1,1,-1,-2},50] (* Harvey P. Dale, Oct 28 2011 *)

Formula

G.f.: (1+x^2)^2/((1+x^2)^3+x^6)+x(1+x^2)/((1+x^2)^3+x^6).
a(n) = Sum_{k=0..floor(n/2)} T(n-k, k)*(-1)^k, T(n, k) = Sum_{i=0..k} C(n, i) (A008949).
a(n) = (-1)^(n/2)*(Sum_{k=0..floor(n/6)} C(n/2, 3*k))*(1+(-1)^n)/2 + (-1)^((n-1)/2)*(Sum_{k=0..floor((n+1)/6)} C((n+1)/2, 3*k+1))*(1-(-1)^n)/2.
a(n) = 2^(n/2)*(cos(Pi*n/2)/3+sqrt(2)*sin(Pi*n/2)/3)+cos(Pi*n/3+Pi/3)/3+sqrt(3)*sin(Pi*n/3+Pi/3)/3.
a(2*n) = (-1)^n*A024493(n); a(2*n+1) = (-1)^n*A024494(n).
a(0)=1, a(1)=1, a(2)=-1, a(3)=-2, a(n) = a(n-1)-3*a(n-2)+2*a(n-3)-2*a(n-4). - Harvey P. Dale, Oct 28 2011

A080850 Number triangle related to a problem of Knuth.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 5, 6, 4, 1, 11, 10, 11, 10, 5, 1, 22, 21, 21, 21, 15, 6, 1, 43, 43, 42, 42, 36, 21, 7, 1, 85, 86, 85, 84, 78, 57, 28, 8, 1, 170, 171, 171, 169, 162, 135, 85, 36, 9, 1, 341, 341, 342, 340, 331, 297, 220, 121, 45, 10, 1, 683, 682, 683, 671, 628, 517
Offset: 1

Views

Author

Paul Barry, Feb 20 2003

Keywords

Comments

In lower-triangular form, the columns are the binomial transforms of the sequences with g.f. x^(k-1)/(1-x^3). The first three columns are A024493, A024494, A024495.

Examples

			Rows are {1}, {1,1}, {1,2,1}, {2,3,3,1}, {5,5,6,4,1}, {11,10,11,10,5,1}...
		

Formula

T(n, 1) = A024493(n). T(n, k)=0, k>n, T(n, n)=1. T(n, k) = T(n-1, k-1)+T(n-1, k).

A375169 Expansion of (1 - x) / ((1 - x)^3 - x^4).

Original entry on oeis.org

1, 2, 3, 4, 6, 11, 22, 43, 80, 144, 257, 462, 839, 1532, 2798, 5099, 9274, 16855, 30640, 55728, 101393, 184490, 335659, 610628, 1110790, 2020635, 3675822, 6686979, 12164896, 22130208, 40258737, 73237462, 133231279, 242370396, 440913550, 802098203, 1459155634
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1-x)/((1-x)^3-x^4))

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4).
a(n) = Sum_{k=0..floor(n/4)} binomial(n+1-k,n-4*k).
a(n) = (n + 1)*hypergeom([(1-n)/4, (2-n)/4, (3-n)/4, -n/4], [2/3, 4/3, -1-n], -4^4/3^3). - Stefano Spezia, Jun 18 2025
Previous Showing 11-16 of 16 results.