A307078
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k-x^k).
Original entry on oeis.org
1, 1, 3, 1, 2, 7, 1, 2, 4, 15, 1, 2, 3, 8, 31, 1, 2, 3, 5, 16, 63, 1, 2, 3, 4, 10, 32, 127, 1, 2, 3, 4, 6, 21, 64, 255, 1, 2, 3, 4, 5, 12, 43, 128, 511, 1, 2, 3, 4, 5, 7, 28, 86, 256, 1023, 1, 2, 3, 4, 5, 6, 14, 64, 171, 512, 2047, 1, 2, 3, 4, 5, 6, 8, 36, 136, 341, 1024, 4095
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 2, 2, 2, 2, 2, 2, 2, 2, ...
7, 4, 3, 3, 3, 3, 3, 3, 3, ...
15, 8, 5, 4, 4, 4, 4, 4, 4, ...
31, 16, 10, 6, 5, 5, 5, 5, 5, ...
63, 32, 21, 12, 7, 6, 6, 6, 6, ...
127, 64, 43, 28, 14, 8, 7, 7, 7, ...
255, 128, 86, 64, 36, 16, 9, 8, 8, ...
511, 256, 171, 136, 93, 45, 18, 10, 9, ...
-
T[n_, k_] := Sum[Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A138635
a(n) =3*a(n-3)-3*a(n-6)+2*a(n-9).
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 3, 2, 6, 5, 5, 11, 10, 11, 21, 21, 22, 42, 43, 43, 85, 86, 85, 171, 171, 170, 342, 341, 341, 683, 682, 683, 1365, 1365, 1366, 2730, 2731, 2731, 5461, 5462, 5461, 10923, 10923, 10922, 21846, 21845, 21845, 43691, 43690, 43691, 87381
Offset: 0
A139468
a(n) = Sum{k=0..n} C(n,3k+1)^2.
Original entry on oeis.org
0, 1, 4, 9, 17, 50, 261, 1275, 5028, 17253, 58601, 218042, 876789, 3537847, 13783018, 52301709, 198627921, 767778786, 3010327497, 11824753551, 46200429186, 179787741723, 700285942731, 2738134757118, 10739885115573, 42164261091351, 165467386466802
Offset: 0
-
Table[Sum[Binomial[n,3k+1]^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Sep 08 2018 *)
A102517
Expansion of (1+x^2)/((1-x+x^2)*(1+2*x^2)).
Original entry on oeis.org
1, 1, -1, -2, 1, 3, -2, -5, 5, 10, -11, -21, 22, 43, -43, -86, 85, 171, -170, -341, 341, 682, -683, -1365, 1366, 2731, -2731, -5462, 5461, 10923, -10922, -21845, 21845, 43690, -43691, -87381, 87382, 174763, -174763, -349526, 349525, 699051, -699050, -1398101, 1398101, 2796202, -2796203, -5592405
Offset: 0
-
CoefficientList[Series[(1+x^2)/((1-x+x^2)(1+2x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{1,-3,2,-2},{1,1,-1,-2},50] (* Harvey P. Dale, Oct 28 2011 *)
A080850
Number triangle related to a problem of Knuth.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 5, 5, 6, 4, 1, 11, 10, 11, 10, 5, 1, 22, 21, 21, 21, 15, 6, 1, 43, 43, 42, 42, 36, 21, 7, 1, 85, 86, 85, 84, 78, 57, 28, 8, 1, 170, 171, 171, 169, 162, 135, 85, 36, 9, 1, 341, 341, 342, 340, 331, 297, 220, 121, 45, 10, 1, 683, 682, 683, 671, 628, 517
Offset: 1
Rows are {1}, {1,1}, {1,2,1}, {2,3,3,1}, {5,5,6,4,1}, {11,10,11,10,5,1}...
A375169
Expansion of (1 - x) / ((1 - x)^3 - x^4).
Original entry on oeis.org
1, 2, 3, 4, 6, 11, 22, 43, 80, 144, 257, 462, 839, 1532, 2798, 5099, 9274, 16855, 30640, 55728, 101393, 184490, 335659, 610628, 1110790, 2020635, 3675822, 6686979, 12164896, 22130208, 40258737, 73237462, 133231279, 242370396, 440913550, 802098203, 1459155634
Offset: 0
Comments