cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A306396 Consider the numbers in A024796, numbers expressible in more than one way as i^2 + j^2 + k^2, where 1 <= i <= j <= k; sequence number of ways these numbers can be expressed.

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 3, 2, 4, 2, 2, 2, 4, 3, 2, 2, 3, 2, 4, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 4, 5, 2, 2, 4, 4, 2, 2, 5, 6, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 2, 2, 5, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 2, 4, 2, 4, 4, 4, 3, 2, 4, 2, 3, 5, 2, 5, 4, 2
Offset: 1

Views

Author

A. Timothy Royappa, Feb 12 2019

Keywords

Comments

Number of accidental degeneracies in the quantum mechanical 3-D "particle-in-a-box" model.

Examples

			The fourth term in A024796 is 41, which can be expressed in two ways as the sum of three nonzero squares (1^2 + 2^2 + 6^2 or 3^2 + 4^2 + 4^2), so a(4) = 2.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Length@ IntegerPartitions[n, {3}, Range[Sqrt[n]]^2]; Select[ Array[r, 300], # > 1 &] (* Giovanni Resta, Feb 21 2020 *)

Formula

a(n) = A025427(A024796(n)).

Extensions

Offset changed to 1 by Jinyuan Wang, Feb 20 2020

A000408 Numbers that are the sum of three nonzero squares.

Original entry on oeis.org

3, 6, 9, 11, 12, 14, 17, 18, 19, 21, 22, 24, 26, 27, 29, 30, 33, 34, 35, 36, 38, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104
Offset: 1

Views

Author

Keywords

Comments

a(n) !== 7 (mod 8). - Boris Putievskiy, May 05 2013
A025427(a(n)) > 0. - Reinhard Zumkeller, Feb 26 2015
According to Halter-Koch (below), a number n is a sum of 3 squares, but not a sum of 3 nonzero squares (i.e., is in A000378 but not A000408), if and only if it is of the form 4^j*s, where j >= 0 and s in {1,2,5,10,13,25,37,58,85,130,?}, where ? denotes at most one unknown number that, if it exists, is > 5*10^10. - Jeffrey Shallit, Jan 15 2017

References

  • L. E. Dickson, History of the Theory of Numbers, vol. II: Diophantine Analysis, Dover, 2005, p. 267.
  • Savin Réalis, Answer to question 25 ("Toute puissance entière de 3 est une somme de trois carrés premiers avec 3"), Mathesis 1 (1881), pp. 87-88. (See also p. 73 where the question is posed.)

Crossrefs

Programs

  • Haskell
    a000408 n = a000408_list !! (n-1)
    a000408_list = filter ((> 0) . a025427) [1..]
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Maple
    N:= 1000: # to get all terms <= N
    S:= series((JacobiTheta3(0,q)-1)^3,q,1001):
    select(t -> coeff(S,q,t)>0, [$1..N]); # Robert Israel, Jan 14 2016
  • Mathematica
    f[n_] := Flatten[Position[Take[Rest[CoefficientList[Sum[x^(i^2), {i, n}]^3, x]], n^2], ?Positive]];f[11] (* _Ray Chandler, Dec 06 2006 *)
    pr[n_] := Select[ PowersRepresentations[n, 3, 2], FreeQ[#, 0] &]; Select[ Range[104], pr[#] != {} &] (* Jean-François Alcover, Apr 04 2013 *)
    max = 1000; s = (EllipticTheta[3, 0, q] - 1)^3 + O[q]^(max+1); Select[ Range[max], SeriesCoefficient[s, {q, 0, #}] > 0 &] (* Jean-François Alcover, Feb 01 2016, after Robert Israel *)
  • PARI
    is(n)=for(x=sqrtint((n-1)\3)+1,sqrtint(n-2), for(y=1,sqrtint(n-x^2-1), if(issquare(n-x^2-y^2), return(1)))); 0 \\ Charles R Greathouse IV, Apr 04 2013
    
  • PARI
    is(n)= my(a, b) ; a=1 ; while(a^2+1Altug Alkan, Jan 18 2016
    
  • Python
    def aupto(lim):
      squares = [k*k for k in range(1, int(lim**.5)+2) if k*k <= lim]
      sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:])
      sum3sqs = set(a+b for a in sum2sqs for b in squares)
      return sorted(set(range(lim+1)) & sum3sqs)
    print(aupto(104)) # Michael S. Branicky, Mar 06 2021

Formula

a(n) = 6n/5 + O(log n). - Charles R Greathouse IV, Mar 14 2014; error term improved Jul 05 2024

A025333 Numbers that are the sum of 3 nonzero squares in 5 or more ways.

Original entry on oeis.org

194, 206, 209, 230, 266, 269, 281, 297, 306, 314, 321, 326, 329, 341, 342, 350, 354, 369, 374, 381, 386, 389, 398, 401, 402, 413, 414, 419, 425, 426, 434, 437, 441, 446, 449, 450, 458, 459, 461, 470, 474, 482, 486, 489, 491, 494, 497, 506, 509, 513, 521, 525, 530, 531
Offset: 1

Views

Author

Keywords

Crossrefs

A025332 Numbers that are the sum of 3 nonzero squares in 4 or more ways.

Original entry on oeis.org

129, 134, 146, 153, 161, 171, 189, 194, 198, 201, 206, 209, 230, 234, 243, 246, 249, 251, 254, 257, 261, 266, 269, 270, 278, 281, 285, 290, 293, 294, 297, 299, 306, 314, 321, 326, 329, 339, 341, 342, 350, 353, 354, 362, 363, 365, 369, 371, 374, 378, 381, 386, 387, 389
Offset: 1

Views

Author

Keywords

Crossrefs

A025334 Numbers that are the sum of 3 nonzero squares in 6 or more ways.

Original entry on oeis.org

209, 297, 306, 314, 321, 326, 329, 341, 342, 369, 374, 425, 426, 434, 441, 446, 458, 459, 461, 486, 489, 494, 497, 506, 509, 513, 521, 530, 531, 534, 542, 545, 546, 549, 558, 561, 566, 569, 581, 593, 594, 602, 605, 614, 621, 626, 629, 633, 641, 649, 650, 654, 657, 659
Offset: 1

Views

Author

Keywords

Crossrefs

A025335 Numbers that are the sum of 3 nonzero squares in 7 or more ways.

Original entry on oeis.org

341, 369, 374, 446, 461, 486, 494, 506, 509, 521, 545, 549, 566, 569, 581, 594, 614, 621, 626, 629, 641, 654, 666, 677, 686, 689, 701, 710, 726, 729, 731, 734, 749, 761, 770, 774, 789, 794, 797, 801, 806, 809, 810, 818, 821, 825, 833, 846, 849, 854, 857, 866, 869, 881
Offset: 1

Views

Author

Keywords

Crossrefs

A025336 Numbers that are the sum of 3 nonzero squares in 8 or more ways.

Original entry on oeis.org

374, 446, 486, 521, 566, 569, 594, 614, 621, 626, 629, 686, 689, 701, 710, 729, 734, 749, 761, 770, 774, 789, 794, 801, 809, 810, 825, 846, 849, 854, 857, 866, 869, 881, 902, 909, 914, 926, 929, 941, 945, 950, 953, 965, 969, 971, 974, 986, 989, 990, 1001, 1014, 1022
Offset: 1

Views

Author

Keywords

Crossrefs

A025337 Numbers that are the sum of 3 nonzero squares in 9 or more ways.

Original entry on oeis.org

594, 614, 626, 689, 734, 761, 774, 794, 801, 846, 854, 866, 881, 909, 914, 926, 929, 941, 950, 965, 974, 986, 989, 990, 1001, 1025, 1026, 1034, 1041, 1046, 1049, 1062, 1070, 1074, 1089, 1091, 1097, 1106, 1109, 1118, 1121, 1130, 1134, 1139, 1154, 1161, 1166
Offset: 1

Views

Author

Keywords

Crossrefs

A025338 Numbers that are the sum of 3 nonzero squares in 10 or more ways.

Original entry on oeis.org

594, 734, 761, 794, 801, 846, 854, 866, 881, 909, 926, 941, 950, 965, 986, 1001, 1026, 1034, 1041, 1046, 1049, 1089, 1106, 1109, 1121, 1130, 1154, 1161, 1169, 1181, 1190, 1206, 1209, 1214, 1226, 1238, 1265, 1274, 1286, 1301, 1314, 1322, 1326, 1329, 1341
Offset: 1

Views

Author

Keywords

Crossrefs

A025331 Numbers that are the sum of 3 nonzero squares in 3 or more ways.

Original entry on oeis.org

54, 66, 81, 86, 89, 99, 101, 110, 114, 126, 129, 131, 134, 146, 149, 150, 153, 161, 162, 166, 171, 173, 174, 179, 182, 185, 186, 189, 194, 198, 201, 206, 209, 216, 219, 221, 222, 225, 227, 230, 233, 234, 237, 241, 242, 243, 245, 246, 249, 251, 254, 257, 258, 261, 264
Offset: 1

Views

Author

Keywords

Crossrefs

Showing 1-10 of 23 results. Next