cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A360560 Triangle read by rows. T(n, k) = (1/2) * C(n, k) * C(3*n - 1, n) for n > 0 and T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 5, 10, 5, 28, 84, 84, 28, 165, 660, 990, 660, 165, 1001, 5005, 10010, 10010, 5005, 1001, 6188, 37128, 92820, 123760, 92820, 37128, 6188, 38760, 271320, 813960, 1356600, 1356600, 813960, 271320, 38760, 245157, 1961256, 6864396, 13728792, 17160990, 13728792, 6864396, 1961256, 245157
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 11 2023

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     5,   10,     5;
    28,   84,    84,    28;
   165,  660,   990,   660,  165;
  1001, 5005, 10010, 10010, 5005, 1001;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> ifelse(n = 0, 1, binomial(n, k)*binomial(3*n - 1, n)/2):
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
  • Maxima
    T(n,m):=1/2*binomial(n+1,m)*binomial(3*n+2,n+1);

Formula

G.f.: 1/2 + x*sqrt(3 + 3*y)*cot(arcsin((3*sqrt(3*x*(y + 1)))/2)/3)/ (2*sqrt(4*x - 27*x^2*(y + 1))).

A374440 Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 4, 1, 3, 2, 0, 1, 5, 1, 6, 3, 1, 1, 1, 6, 1, 10, 4, 4, 3, 0, 1, 7, 1, 15, 5, 10, 6, 1, 1, 1, 8, 1, 21, 6, 20, 10, 5, 4, 0, 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1, 1, 10, 1, 36, 8, 56, 21, 35, 20, 6, 5, 0
Offset: 0

Views

Author

Peter Luschny, Jul 21 2024

Keywords

Comments

Member of the family of Lucas-Fibonacci polynomials.

Examples

			Triangle starts:
  [ 0]  1;
  [ 1]  1,  0;
  [ 2]  1,  1,  1;
  [ 3]  1,  2,  1,  0;
  [ 4]  1,  3,  1,  1,  1;
  [ 5]  1,  4,  1,  3,  2,  0;
  [ 6]  1,  5,  1,  6,  3,  1,  1;
  [ 7]  1,  6,  1, 10,  4,  4,  3,  0;
  [ 8]  1,  7,  1, 15,  5, 10,  6,  1,  1;
  [ 9]  1,  8,  1, 21,  6, 20, 10,  5,  4,  0;
  [10]  1,  9,  1, 28,  7, 35, 15, 15, 10,  1, 1;
		

Crossrefs

Cf. A374441.
Cf. A000032 (Lucas), A001611 (even sums, Fibonacci + 1), A000071 (odd sums, Fibonacci - 1), A001911 (alternating sums, Fibonacci(n+3) - 2), A025560 (row lcm), A073028 (row max), A117671 & A025174 (central terms), A057979 (subdiagonal), A000217 (column 3).

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0
    elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) -
    binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):

Formula

T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling((k + even(k))/2), floor(k/2)) if k > 0, T(n, 0) = 1, where even(k) = 1 if k is even, otherwise 0.
Columns with odd index agree with the odd indexed columns of A374441.

A139796 Last term of A139687(n) with a fourth leading 1 = 1, 1, 1, 1, 2, 2, 1, 3, 5, 5 rows.

Original entry on oeis.org

1, 1, 2, 5, 9, 28, 48, 165, 275, 1001, 1638, 6188
Offset: 0

Views

Author

Paul Curtz, Jun 14 2008

Keywords

Comments

Based on sequences identical to their p-th differences.

Crossrefs

Cf. A094600.

Formula

Odd rows are 1; 1, 2, 2; 1, 3, 6, 9, 9; 1, 4, 10, 20, 34, 48, 48; 1, 5, 15, 35, 70, 125, 200, 275, 275; 1, 6, 21, 56, 126, 252, 461, 780, 1209, 1638, 1638; with respective sums second bisection a(2n+1)= 1, 5, 28, 165, 1001, 6188 = A025174(n+1)?
Previous Showing 41-43 of 43 results.