cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A157986 Largest exponents of perfect powers (m^k where m is an integer and k >= 2) multiplied by -1 when base m is prime (m^k thus a prime power).

Original entry on oeis.org

2, -2, -3, -2, -4, -2, -3, -5, 2, -2, -6, -4, 2, -2, -3, -7, 2, -2, 2, 3, 2, -5, -8, -2, 2, -3, -2, 2, 2, 2, -9, -2, 2, -4, 2, -6, 2, -2, 2, -2, 3, -10, 2, 2, 2, 4, -3, -2, 2, 2, 2, -2, 3, 2, -2, 2, 2, -11, 2, -7, -3, -2, 2, -4, 2, 2, 2, 3, -2, 2, 2, -5, 2, 2, 2, 3, -2, 2, -2, 2, 2, -12, 2, 2
Offset: 1

Views

Author

Daniel Forgues, Mar 10 2009

Keywords

Crossrefs

Cf. A001597 (perfect powers), A025479 (largest exponents of perfect powers).
Cf. A025478 (least roots of perfect powers).
Cf. A157985.

Formula

a(n) = {k}_n * (-1)^(Pi(m) - Pi(m-1)) where {k}_n is the exponent of {m^k}_n (the n-th perfect power with positive integer base m corresponding to largest integer exponent k) and Pi(m) is the prime counting function evaluated at m.
a(n) = A025479(n) * (-1)^{Pi(m) - Pi(m-1)}, with m = A001597(n)^(1/(A025479(n))).

A076405 Next perfect power having the same least root of n-th perfect power, A001597.

Original entry on oeis.org

1, 8, 16, 27, 32, 125, 81, 64, 216, 343, 128, 243, 1000, 1331, 625, 256, 1728, 2197, 2744, 1296, 3375, 729, 512, 4913, 5832, 2401, 6859, 8000, 9261, 10648, 1024, 12167, 13824, 3125, 17576, 2187, 21952, 24389, 27000, 29791, 10000, 2048, 35937, 39304
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Comments

A025478(a(n)) = A025478(n); A001597(a(n)) = A025478(n)*A001597(n).

Examples

			.   n  | A001597(n) | A025478(n)^A025479(n) |  a(n)
. -----+------------+-----------------------+---------------------------
.  13  |       100  |         10^2          | 1000 = 10^3 = A001597(41)
.  14  |       121  |         11^2          | 1331 = 11^3 = A001597(47)
.  15  |       125  |          5^3          |  625 =  5^4 = A001597(34)
.  16  |       128  |          2^7          |  256 =  2^8 = A001597(23)
.  17  |       144  |         12^2          | 1728 = 12^3 = A001597(54).
		

Crossrefs

Cf. A052410.

Programs

  • Haskell
    a076405 n = a076405_list !! (n-1)
    a076405_list = 1 : f (tail $ zip a001597_list a025478_list) where
       f ((p, r) : us) = g us where
         g ((q, r') : vs) = if r' == r then q : f us else g vs
    -- Reinhard Zumkeller, Mar 11 2014
    
  • Mathematica
    ppQ[n_] := GCD @@ Last /@ FactorInteger@# > 1; f[n_] := Block[{fi = Transpose@ FactorInteger@ n}, fi2 = fi[[2]]; Times @@ (fi[[1]]^(fi[[2]] (1 + 1/GCD @@ fi[[2]])))]; lst = Join[{1}, Select[ Range@ 1848, ppQ@# &]]; f /@ lst (* Robert G. Wilson v, Aug 03 2008 *)
  • Python
    from math import gcd
    from sympy import mobius, integer_nthroot, factorint
    def A076405(n):
        if n == 1: return 1
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax*integer_nthroot(kmax, gcd(*factorint(kmax).values()))[0] # Chai Wah Wu, Aug 13 2024

Extensions

More terms from Robert G. Wilson v, Aug 03 2008

A340643 Numbers k such that the two perfect powers immediately adjacent to k^2 both have exponents greater than 2.

Original entry on oeis.org

2, 3, 5, 15, 26, 46, 82, 89, 90, 129, 323, 362, 401, 420, 610, 624, 840, 2024, 2703, 2808, 6888, 12099, 15963, 19320, 24650, 29930, 33490, 36482, 39203, 45795, 47523, 52440, 66050, 69168, 83408, 94248, 94863, 103683, 114284, 164399, 185364, 206442, 222785, 227530, 229180
Offset: 1

Views

Author

Hugo Pfoertner, Jan 14 2021

Keywords

Comments

Within the range of the data, a(n)^2 = A340642(n), i.e., no 3 immediately consecutive perfect powers x^p1, y^p2, z^p3 with min (p1, p2, p3) > 2 are seen. Is there a counterexample?

Crossrefs

Programs

  • PARI
    a340643(limit)={my(p2=999, p1=2, n2=1, n1=4); for(n=5, limit, my(p0=ispower(n)); if(p0>1, if(issquare(n1)&p2>2&p0>2, print1(sqrtint(n1),", ")); n2=n1; n1=n; p2=p1; p1=p0))};
    a340643(10^8)
    
  • PARI
    upto(n) = {n *= n; my(v = List(), res = List([2])); for(i = 2, sqrtnint(n, 3), for(e = 3, logint(n, i), listput(v, i^e) ); ); listsort(v, 1); for(i = 1, #v - 1, if(sqrtint(v[i]) + 1 == sqrtint(v[i+1]) - issquare(v[i+1]), listput(res, sqrtint(v[i+1]-issquare(v[i+1]))); ) ); res }

Extensions

More terms from David A. Corneth, Jan 14 2021

A157987 Smallest roots m of perfect powers (m^k where m is an integer and k >= 2) multiplied by -1 when m is prime (m^k thus a prime power).

Original entry on oeis.org

1, -2, -2, -3, -2, -5, -3, -2, 6, -7, -2, -3, 10, -11, -5, -2, 12, -13, 14, 6, 15, -3, -2, -17, 18, -7, -19, 20, 21, 22, -2, -23, 24, -5, 26, -3, 28, -29, 30, -31, 10, -2, 33, 34, 35, 6, -11, -37, 38, 39, 40, -41, 12, 42, -43, 44, 45, -2, 46, -3, -13, -47, 48, -7, 50, 51, 52
Offset: 1

Views

Author

Daniel Forgues, Mar 10 2009, Mar 14 2009

Keywords

Crossrefs

Cf. A157985 Perfect powers (m^k where m is an integer and k >= 2) multiplied by -1 when m is prime for largest k (m^k thus a prime power).
Cf. A157986 Largest exponents of perfect powers (m^k where m is an integer and k >= 2) multiplied by -1 when base m is prime (m^k thus a prime power).
Cf. A001597 Perfect powers: m^k where m is an integer and k >= 2.
Cf. A025479 Largest exponents of perfect powers (A001597).
Cf. A025478 Least roots of perfect powers (A001597).

Formula

a(n) = {m}_n * (-1)^{Pi(m) - Pi(m-1)}
where {m}_n is the smallest root of {m^k}_n (the n-th perfect power with positive integer base m corresponding to largest integer exponent k) and Pi(m) is the prime counting function evaluated at m.
a(n) = m * (-1)^{Pi(m) - Pi(m-1)}, with m = A025478(n) = {A001597(n)}^{1/{A025479(n)}}.
Previous Showing 11-14 of 14 results.