cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A239101 Riordan array read by rows, corresponding to array in A180562.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 10, 5, 2, 1, 26, 13, 6, 2, 1, 70, 35, 16, 7, 2, 1, 192, 96, 45, 19, 8, 2, 1, 534, 267, 126, 56, 22, 9, 2, 1, 1500, 750, 357, 160, 68, 25, 10, 2, 1, 4246, 2123, 1016, 463, 198, 81, 28, 11, 2, 1, 12092, 6046, 2907, 1337, 586, 240, 95, 31
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2014

Keywords

Comments

Take lower triangle of square array in A180562, read from right to left.
Row sums are in A225034. - Philippe Deléham, Mar 25 2014
Riordan array (f(x), (f(x)-1)/(2*f(x))) where f(x) = sqrt((1+x)/(1-3*x)). - Philippe Deléham, Mar 25 2014

Examples

			Triangle begins:
1
2 1
4 2 1
10 5 2 1
26 13 6 2 1
70 35 16 7 2 1
192 96 45 19 8 2 1
...
192 = 2*96, 96 = 70 - 35 + 16 + 45, 45 = 35 - 16 + 7 + 19, etc. - _Philippe Deléham_, Mar 25 2014
Production matrix is:
2, 1
0, 0, 1
2, 1, 0, 1
2, 1, 1, 0, 1
2, 1, 1, 1, 0, 1
2, 1, 1, 1, 1, 0, 1
2, 1, 1, 1, 1, 1, 0, 1
2, 1, 1, 1, 1, 1, 1, 0, 1
... _Philippe Deléham_, Sep 15 2014
		

Crossrefs

Cf. A180562.
Cf. T(n,0) = A025565(n+1), T(n+1,1) = A005773(n+1), T(n+2,2) = A005717(n+1), A225034 (Row sums). - Philippe Deléham, Mar 25 2014

Formula

T(0,0) = 1, T(n,0) = 2*T(n,1) for n>0, T(n,k) = T(n-1,k-1) - T(n-1,k) + T(n-1,k+1) + T(n,k+1) for k>0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2014

Extensions

More terms from Philippe Deléham, Mar 25 2014

A079213 Triangle read by rows giving T(n,k) = number of sets of k black squares in an n X n checkerboard with the upper left corner colored black, such that the line joining any 2 squares slopes down to the right, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 8, 12, 4, 1, 1, 13, 28, 22, 5, 1, 1, 18, 63, 68, 35, 6, 1, 1, 25, 117, 197, 135, 51, 7, 1, 1, 32, 208, 464, 480, 236, 70, 8, 1, 1, 41, 336, 1016, 1376, 996, 378, 92, 9, 1, 1, 50, 525, 2000, 3600, 3372, 1848, 568, 117, 10, 1, 1, 61, 775, 3725
Offset: 0

Views

Author

Dean Hickerson, Jan 02 2003

Keywords

Comments

Based on a question from Cees H. Elzinga (ch.elzinga(AT)tiscali.nl), Dec 30 2002

Examples

			T(5,3)=22; one of the 22 sets of 3 is shown by the asterisks below; the 'o's denote black squares not in the set.
*.o.o
.*.o.
o.o.*
.o.o.
o.o.o
		

Crossrefs

Cf. A025565.

Programs

  • Mathematica
    f[m_, n_, 0] := 1; f[m_, n_, k_] := f[m, n, k]=Sum[If[EvenQ[m+n+mp+np], f[mp, np, k-1], 0], {mp, k-1, m-1}, {np, k-1, n-1}]; T[n_, k_] := f[n, n, k]; Flatten[Table[T[n, k], {n, 0, 11}, {k, 0, n}]]

Formula

More generally, let f(m, n, k) be the number of such sets in an m X n checkerboard. Then f(m, n, k) = Sum_{k-1<=m'
G.f.: Sum_{m>=0, n>=0, k>=0} f(m, n, k) x^m * y^n * z^k = (1+x) * (1+y) / ((1-x^2) * (1-y^2) + x*y*z*(1+x*y)).
T(n, 0) = T(n, n) = 1. T(n, 1) = ceiling(n^2/2). T(n, 2) = (n^2 * (n^2-2*n+4))/16 if n is even, ((n-1)^2 * (n^2+3))/16 if n is odd. T(n, n-1) = n. T(n, n-2) = (n-1)*(3n-4)/2.
G.f. (conjectured): Sum_{n>=0, k>=0} T(n, k) x^n y^k = sqrt((1+x)/((1+x-x*y)((1-x)^2 - x*y*(1+x)))).
Conjecture: Sum_{k=0..n} T(n, k) = A025565(n+1).

A352916 a(n) = A025179(n-2) + A102839(n-4), for n >= 4, with a(0) = a(2) = 0 and a(1) = a(3) = 1.

Original entry on oeis.org

0, 1, 0, 1, 1, 5, 13, 41, 121, 366, 1100, 3319, 10015, 30253, 91433, 276475, 836291, 2530321, 7657317, 23175867, 70150875, 212349687, 642803631, 1945819299, 5890003539, 17828324220, 53961228258, 163314594513, 494238394601, 1495593167851, 4525366817455
Offset: 0

Author

Kassie Archer, Apr 26 2022

Keywords

Comments

a(n) + 2*A025565(n) is the number of Dyck paths of semilength n+2 with L(D) = 4 where L(D) is the product of binomial coefficients (u_i(D)+d_i(D) choose u_i(D)), where u_i(D) is the number of up-steps between the i-th and (i+1)-st down step and d_i(D) is the number of down-steps between the i-th and (i+1)-st up step.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, irem(n, 2),
         ((3*(n-4))*(n^4+6*n^3-41*n^2+18*n+76)*a(n-2)+
          (2*n^5+3*n^4-136*n^3+525*n^2-658*n+132)*a(n-1))/
          ((n^4+2*n^3-53*n^2+114*n+12)*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 19 2022
  • Mathematica
    m[n_] := m[n] = If[n == 0, 1, m[n-1] + Sum[m[k]*m[n-2-k], {k, 0, n-2}]];
    a[n_] := Switch[n, 0|2, 0, 1|3|4, 1, _, m[n-3] + Binomial[n-3, 2]*m[n-5] + 2*Sum[(i+1)*m[i]*m[n-5-i], {i, 0, n-5}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 26 2022 *)
  • PARI
    m(n) = polcoeff( ( 1 - x - sqrt((1 - x)^2 - 4 * x^2 + x^3 * O(x^n))) / (2 * x^2), n); \\ A001006
    a(n) = if (n<=3, n%2, m(n-3) + binomial(n-3,2)*m(n-5) + 2*sum(i=0, n-5, (i+1)*m(i)*m(n-5-i))); \\ Michel Marcus, May 19 2022

Formula

a(n) = m(n-3) + binomial(n-3,2)*m(n-5) + 2*Sum_{i=0..n-5} (i+1)*m(i)*m(n-5-i) for n>=3, where m(n) = A001006(n) is the n-th Motzkin number.
a(n) ~ sqrt(n) * 3^(n - 7/2) / (4*sqrt(Pi)). - Vaclav Kotesovec, Jun 03 2022
D-finite with recurrence (n-1)*(n-69)*a(n) +(n^2+221*n-513)*a(n-1) +(-37*n^2+356*n-312)*a(n-2) +(47*n^2-859*n+2820)*a(n-3) +12*(7*n-30)*(n-6)*a(n-4)=0. - R. J. Mathar, Jul 17 2023

A353133 Coefficients of expansion of f(x) = (1+x*m(x))^5*(x^2*(x*m(x))'+1) where m(x) is the generating function for A001006.

Original entry on oeis.org

1, 5, 16, 47, 136, 392, 1130, 3262, 9434, 27337, 79364, 230815, 672380, 1961635, 5730860, 16763685, 49093260, 143924943, 422352816, 1240529133, 3646710456, 10728322770, 31584554610, 93048320820, 274292367650, 809044988695, 2387642856380, 7050001551361, 20826624824612, 61552574382856
Offset: 0

Author

Kassie Archer, Apr 25 2022

Keywords

Comments

2*x^7*f(x) is the generating function for the number of Dyck paths with L(D)=7 where L(D) is the product of binomial coefficients (u_i(D)+d_i(D) choose u_i(D)), where u_i(D) is the number of up-steps between the i-th and (i+1)-st down step and d_i(D) is the number of down-steps between the i-th and (i+1)-st up step.

Crossrefs

Programs

  • PARI
    m(x) = (1-x-sqrt(1-2*x-3*(x^2)))/(2*(x^2));
    my(x='x+O('x^30)); Vec((1+x*m(x))^5*(x^2*(x*m(x))'+1)) \\ Michel Marcus, Apr 25 2022
Previous Showing 11-14 of 14 results.