cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A107842 A number triangle of lattice walks.

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 14, 20, 8, 1, 42, 75, 44, 11, 1, 132, 275, 208, 77, 14, 1, 429, 1001, 910, 440, 119, 17, 1, 1430, 3640, 3808, 2244, 798, 170, 20, 1, 4862, 13260, 15504, 10659, 4655, 1309, 230, 23, 1, 16796, 48450, 62016, 48279, 24794, 8602, 2000, 299, 26, 1
Offset: 0

Views

Author

Paul Barry, May 24 2005

Keywords

Comments

First column is A000108(n+1). Columns include A000344, A003518 and A000589. Row sums are A026671. Compare [1,1,1,...] DELTA [0,1,0,0,...] where DELTA is the operator defined in A084938.
Transposed version in A109450. - Philippe Deléham, Jun 05 2007

Examples

			Triangle begins
   1;
   2,  1;
   5,  5,  1;
  14, 20,  8,  1;
  42, 75, 44, 11,  1;
Triangle [1,1,1,1,1,...] DELTA [0,1,0,0,0,0,...] begins:
    1;
    1,   0;
    2,   1,   0;
    5,   5,   1,   0;
   14,  20,   8,   1,   0;
   42,  75,  44,  11,   1,   0;
  132, 275, 208,  77,  14,   1,   0; ...
		

Formula

Number triangle T(n, k) = (3k+2)*C(2n+k+1, n-k)/(n+2k+2).
Column k has g.f.: x^k*C(x)^(3k+2) where C(x) is the g.f. of A000108.

A109450 Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 8, 20, 14, 0, 1, 11, 44, 75, 42, 0, 1, 14, 77, 208, 275, 132, 0, 1, 17, 119, 440, 910, 1001, 429, 0, 1, 20, 170, 798, 2244, 3808, 3640, 1430, 0, 1, 23, 230, 1309, 4655, 10659, 15504, 13260, 4862, 0, 1, 26, 299, 2000
Offset: 0

Views

Author

Philippe Deléham, Aug 26 2005

Keywords

Comments

Row sums : 1, 1, 3, 11, 43, 173, .... (see A026671).
Transposed version in A107842.

Examples

			Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 8, 20, 14;
0, 1, 11, 44, 75, 42;
0, 1, 14, 77, 208, 275, 132
		

Crossrefs

Formula

T(0, 0) = 1, T(n, 0) = 0 if n>0, T(n, k) = 0 if k>n, T(n, k) = (3n-3k+2)*binomial(3n-k-1, k-1)/(3n-2k+1).
T(n, n) = A000108(n), Catalan numbers.

A164651 Number of permutations of length n that avoid both 1243 and 2134.

Original entry on oeis.org

1, 1, 2, 6, 22, 87, 354, 1459, 6056, 25252, 105632, 442916, 1860498, 7826120, 32956964, 138911074, 585926818, 2472923499, 10442263142, 44112331275, 186413949540, 788000866243, 3331853294090, 14090947775581, 59604161832772
Offset: 0

Views

Author

Vincent Vatter, Aug 19 2009

Keywords

Comments

Le proved that this also gives the number of permutations of length n that avoid both 1342 and 3124.
For n>=1, a(n) is the number of paths of North steps N = (0,1), East steps E = (1,0), and Diagonal steps D = (1,1) from the origin to (n-1,n-1) such that all D steps lie on the diagonal line y = x and the first step away from the diagonal (if there is one) is a North step. For example, a(3) = 6 counts DD, DNE, NED, NENE, NEEN, NNEE. - David Callan, Jun 25 2013

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(3*x^2-9*x+2+x*(1-x)*Sqrt[1-4*x])/(2*(x-1)*(x^2+4*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 28 2012 *)

Formula

From Vaclav Kotesovec, Oct 24 2012: (Start)
G.f.: (3*x^2-9*x+2+x*(1-x)*sqrt(1-4*x))/(2*(x-1)*(x^2+4*x-1)).
Recurrence: (n-4)*(n-1)*a(n) = (9*n^2 - 51*n + 62)*a(n-1) - (23*n^2 - 145*n + 222)*a(n-2) + (11*n^2 - 73*n + 122)*a(n-3) + 2*(n-3)*(2*n-7)*a(n-4).
a(n) ~ (1/2-1/sqrt(5))*(sqrt(5)+2)^n. (End)
These formulas were conjectured by Vaclav Kotesovec and proved correct by David Callan (see Link).
a(n) = (A026671(n-1) + 1)/2 for n >= 1. - David Callan, Jun 25 2013
a(n-1) = Sum_{k=0..n} binomial(n, k)*A358092(k) for n >= 1. - Peter Luschny, Oct 29 2022

A305561 Expansion of 2*x*(1 - 2*x)/(1 + 2*x - 8*x^2 - sqrt(1 - 4*x^2)).

Original entry on oeis.org

1, 1, 3, 8, 23, 64, 182, 512, 1451, 4096, 11594, 32768, 92710, 262144, 741548, 2097152, 5931955, 16777216, 47454210, 134217728, 379628818, 1073741824, 3037013748, 8589934592, 24296051198, 68719476736, 194368201572, 549755813888, 1554944869676, 4398046511104
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2018

Keywords

Comments

Invert transform of A001405.

Crossrefs

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 2*x*(1 - 2*x)/(1 + 2*x - 8*x^2 - Sqrt(1 - 4*x^2)))); // Vincenzo Librandi, Jan 27 2020
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-i)*binomial(i, floor(i/2)), i=1..n))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    nmax = 29; CoefficientList[Series[2 x (1 - 2 x)/(1 + 2 x - 8 x^2 - Sqrt[1 - 4 x^2]), {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[1/(1 - Sum[Binomial[k, Floor[k/2]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[k, Floor[k/2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: 1/(1 - Sum_{k>=1} binomial(k,floor(k/2))*x^k).
D-finite with recurrence: n*(n+1)*a(n) +(n-1)*(n-5)*a(n-1) -12*(n-1)*(n+1)*a(n-2) -12*(n-2)*(n-5)*a(n-3) +32*(n+1)*(n-3)*a(n-4) +32*(n-4)*(n-5)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
a(n) ~ 2^(3*(n-1)/2). - Vaclav Kotesovec, Jan 29 2020
Previous Showing 21-24 of 24 results.