A107842
A number triangle of lattice walks.
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 14, 20, 8, 1, 42, 75, 44, 11, 1, 132, 275, 208, 77, 14, 1, 429, 1001, 910, 440, 119, 17, 1, 1430, 3640, 3808, 2244, 798, 170, 20, 1, 4862, 13260, 15504, 10659, 4655, 1309, 230, 23, 1, 16796, 48450, 62016, 48279, 24794, 8602, 2000, 299, 26, 1
Offset: 0
Triangle begins
1;
2, 1;
5, 5, 1;
14, 20, 8, 1;
42, 75, 44, 11, 1;
Triangle [1,1,1,1,1,...] DELTA [0,1,0,0,0,0,...] begins:
1;
1, 0;
2, 1, 0;
5, 5, 1, 0;
14, 20, 8, 1, 0;
42, 75, 44, 11, 1, 0;
132, 275, 208, 77, 14, 1, 0; ...
A109450
Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 8, 20, 14, 0, 1, 11, 44, 75, 42, 0, 1, 14, 77, 208, 275, 132, 0, 1, 17, 119, 440, 910, 1001, 429, 0, 1, 20, 170, 798, 2244, 3808, 3640, 1430, 0, 1, 23, 230, 1309, 4655, 10659, 15504, 13260, 4862, 0, 1, 26, 299, 2000
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 8, 20, 14;
0, 1, 11, 44, 75, 42;
0, 1, 14, 77, 208, 275, 132
A164651
Number of permutations of length n that avoid both 1243 and 2134.
Original entry on oeis.org
1, 1, 2, 6, 22, 87, 354, 1459, 6056, 25252, 105632, 442916, 1860498, 7826120, 32956964, 138911074, 585926818, 2472923499, 10442263142, 44112331275, 186413949540, 788000866243, 3331853294090, 14090947775581, 59604161832772
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- David Callan, The number of {1243, 2134}-avoiding permutations, arXiv:1303.3857 [math.CO], 2013.
- David Callan, Permutations avoiding 4321 and 3241 have an algebraic generating function, arXiv:1306.3193 [math.CO], 2013.
- Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
- Ian Le, Wilf classes of pairs of permutations of length 4, Electron. J. Combin., 12(1) (2005), Research article 25, 26 pages.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
-
CoefficientList[Series[(3*x^2-9*x+2+x*(1-x)*Sqrt[1-4*x])/(2*(x-1)*(x^2+4*x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 28 2012 *)
A305561
Expansion of 2*x*(1 - 2*x)/(1 + 2*x - 8*x^2 - sqrt(1 - 4*x^2)).
Original entry on oeis.org
1, 1, 3, 8, 23, 64, 182, 512, 1451, 4096, 11594, 32768, 92710, 262144, 741548, 2097152, 5931955, 16777216, 47454210, 134217728, 379628818, 1073741824, 3037013748, 8589934592, 24296051198, 68719476736, 194368201572, 549755813888, 1554944869676, 4398046511104
Offset: 0
-
m:=35; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 2*x*(1 - 2*x)/(1 + 2*x - 8*x^2 - Sqrt(1 - 4*x^2)))); // Vincenzo Librandi, Jan 27 2020
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(i, floor(i/2)), i=1..n))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 21 2018
-
nmax = 29; CoefficientList[Series[2 x (1 - 2 x)/(1 + 2 x - 8 x^2 - Sqrt[1 - 4 x^2]), {x, 0, nmax}], x]
nmax = 29; CoefficientList[Series[1/(1 - Sum[Binomial[k, Floor[k/2]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Binomial[k, Floor[k/2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]
Comments