cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A026844 a(n) = T(2n,n+4), T given by A026725.

Original entry on oeis.org

1, 10, 67, 379, 1958, 9576, 45190, 208084, 941480, 4204949, 18597694, 81635060, 356220369, 1547066801, 6693361973, 28868868733, 124194904215, 533156609953, 2284722747583, 9776008778375, 41777089615201, 178338353574365, 760586650190997
Offset: 4

Views

Author

Keywords

Comments

Column k=9 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 19 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4x])^9/(64*x^3*(8*x^2-(1-Sqrt[1-4x])^3)), {x,0,40}], x], 4] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec( (1-sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-sqrt(1-4*x))^3)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-sqrt(1-4*x))^3)) ).series(x, 45).coefficients(x, sparse=False); a[4:40] # G. C. Greubel, Jul 19 2019

Formula

G.f.: (x^4*C(x)^9)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
a(n) ~ phi^(3*n-5) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019
(7719*n+49402)*(n+3)*a(n) +(7719*n^2-1057949*n-1942990)*a(n-1) +4*(-211672*n^2+2076533*n+763807)*a(n-2) +(4326581*n^2-34087269*n+38502298)*a(n-3) +3*(-1940897*n^2+16395555*n-37085206)*a(n-4) -2*(406705*n-1575734)*(2*n-9)*a(n-5)=0. - R. J. Mathar, Oct 26 2019

A026734 a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026725.

Original entry on oeis.org

1, 3, 7, 16, 34, 74, 154, 330, 682, 1451, 2989, 6332, 13018, 27495, 56449, 118954, 243964, 513180, 1051612, 2208856, 4523344, 9489604, 19422124, 40704746, 83269990, 174366100, 356558320, 746073604, 1525104172, 3189119418
Offset: 0

Views

Author

Keywords

Crossrefs

Partial sums of A026732.

Programs

  • GAP
    T:= function(n,k)
        if n<0 then return 0;
        elif k=0 or k=n then return 1;
        elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> T(j,k) )))); # G. C. Greubel, Oct 26 2019
  • Maple
    A026725:= proc(n,k) option remember;
        if n<0 or k<0 then 0;
        elif k=0 or k=n then 1;
        elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ;
       else procname(n-1,k-1)+procname(n-1,k) ;
    fi; end proc:seq(add(add(A026725(i,j), j=0..n), i=0..n), n=0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[j, k], {k,0,n}, {j,0,n}], {n,0,30}] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )));
    vector(31, n, sum(j=0,n-1, sum(i=0,n-1, T(j,i))) ) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum( sum( T(j, k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 26 2019
    

A026735 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026725.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 15, 28, 43, 71, 130, 201, 331, 597, 928, 1525, 2720, 4245, 6965, 12315, 19280, 31595, 55472, 87067, 142539, 248802, 391341, 640143, 1111864, 1752007, 2863871, 4953162, 7817033, 12770195, 22004810, 34775005, 56779815
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    T:= function(n,k)
        if n<0 then return 0;
        elif k=0 or k=n then return 1;
        elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..30], n-> Sum([0..Int(n/2)], k-> T(n-k,k) )); # G. C. Greubel, Oct 26 2019
  • Maple
    A026725:= proc(n,k) option remember;
        if n<0 or k<0 then 0;
        elif k=0 or k=n then 1;
        elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ;
       else procname(n-1,k-1)+procname(n-1,k) ;
       fi;
    end proc:
    seq(add(A026725(n-k,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )));
    vector(31, n, sum(j=0,(n-1)\2, T(n-j,j)) ) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum( T(n-j, j) for j in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 26 2019
    

Formula

Conjecture: G.f.:-1/2*(2*x^6-5*x^4+8*x^3+x-2+x*(x-1)*(x^2+x+1)*(1-4*x^3)^(1/2))/(x^6+4*x^3-1)/(x^2+x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009

A026847 a(n) = T(n,m) + T(n,m+1) + ... + T(n,n), where m=[ (n+1)/2 ], T given by A026725.

Original entry on oeis.org

1, 1, 3, 4, 12, 17, 50, 73, 211, 314, 895, 1350, 3805, 5798, 16193, 24872, 68940, 106573, 293526, 456169, 1249622, 1950697, 5318976, 8334539, 22634700, 35582783, 96296410, 151809737, 409573584, 647279131, 1741574006, 2758310121
Offset: 0

Views

Author

Keywords

A027207 Self-convolution of row n of array T given by A026725.

Original entry on oeis.org

1, 2, 6, 26, 91, 414, 1519, 6980, 26176, 120596, 457880, 2110422, 8076044, 37211408, 143165518, 659264978, 2546261659, 11717539646, 45387607779, 208729977124, 810316893827
Offset: 0

Views

Author

Keywords

Programs

A027208 a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026725.

Original entry on oeis.org

1, 4, 19, 72, 338, 1289, 6027, 23117, 107746, 415058, 1929383, 7456777, 34584731, 134005510, 620344059, 2408498148, 11131638368, 43289074671, 199800878749, 778025282080, 3586777011141, 13982303458588, 64394916131100, 251261623174835, 1156165698462868, 4514741175877259
Offset: 1

Views

Author

Keywords

Programs

Extensions

Name corrected by R. J. Mathar, Oct 21 2019
More terms from Sean A. Irvine, Oct 24 2019

A027209 a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026725.

Original entry on oeis.org

1, 7, 34, 173, 741, 3549, 14670, 68683, 279715, 1294598, 5233060, 24052965, 96822587, 442972139, 1778697948, 8110611295, 32516501991, 147897243768, 592346459071, 2688895275974, 10762289869782, 48776681304283, 195143578562778, 883272843800993, 3532739195660162
Offset: 2

Views

Author

Keywords

Programs

Extensions

Name corrected by R. J. Mathar, Oct 21 2019
More terms from Sean A. Irvine, Oct 24 2019

A027210 a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026725.

Original entry on oeis.org

1, 9, 57, 298, 1545, 7126, 34603, 151633, 714481, 3049328, 14131926, 59385159, 272409611, 1133433579, 5163641033, 21341122875, 96751092786, 397978832144, 1797722306693, 7369285976135, 33195299823112, 135723491400062, 610027809595308, 2489247495517382, 11168400384253936
Offset: 3

Views

Author

Keywords

Programs

Extensions

Name corrected by R. J. Mathar, Oct 21 2019
More terms from Sean A. Irvine, Oct 24 2019

A027211 a(n) = Sum_{k=0..n} (k+1) * A026725(n, k).

Original entry on oeis.org

1, 3, 8, 22, 53, 136, 312, 768, 1712, 4101, 8971, 21082, 45507, 105435, 225347, 516424, 1095353, 2488480, 5246176, 11834584, 24826412, 55677436, 116321132, 259585768, 540454158, 1201026646, 2493149402, 5520322840, 11430160964
Offset: 0

Views

Author

Keywords

Programs

Extensions

Name corrected by R. J. Mathar, Oct 21 2019

A027212 a(n) = Sum_{k=0..n} (k+1) * A026725(n, n-k).

Original entry on oeis.org

1, 3, 8, 23, 55, 144, 328, 816, 1808, 4358, 9485, 22377, 48097, 111720, 237917, 546161, 1154827, 2626624, 5522464, 12467540, 26092324, 58546544, 122059348, 272479782, 566242186, 1258568324, 2608232758, 5775620396, 11940756076
Offset: 0

Views

Author

Keywords

Programs

Extensions

Name corrected by R. J. Mathar, Oct 21 2019
Previous Showing 11-20 of 25 results. Next