A026844
a(n) = T(2n,n+4), T given by A026725.
Original entry on oeis.org
1, 10, 67, 379, 1958, 9576, 45190, 208084, 941480, 4204949, 18597694, 81635060, 356220369, 1547066801, 6693361973, 28868868733, 124194904215, 533156609953, 2284722747583, 9776008778375, 41777089615201, 178338353574365, 760586650190997
Offset: 4
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 19 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4x])^9/(64*x^3*(8*x^2-(1-Sqrt[1-4x])^3)), {x,0,40}], x], 4] (* G. C. Greubel, Jul 19 2019 *)
-
my(x='x+O('x^40)); Vec( (1-sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-sqrt(1-4*x))^3)) ) \\ G. C. Greubel, Jul 19 2019
-
a=((1-sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-sqrt(1-4*x))^3)) ).series(x, 45).coefficients(x, sparse=False); a[4:40] # G. C. Greubel, Jul 19 2019
A026734
a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026725.
Original entry on oeis.org
1, 3, 7, 16, 34, 74, 154, 330, 682, 1451, 2989, 6332, 13018, 27495, 56449, 118954, 243964, 513180, 1051612, 2208856, 4523344, 9489604, 19422124, 40704746, 83269990, 174366100, 356558320, 746073604, 1525104172, 3189119418
Offset: 0
-
T:= function(n,k)
if n<0 then return 0;
elif k=0 or k=n then return 1;
elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
else return T(n-1, k-1) + T(n-1, k);
fi;
end;
List([0..30], n-> Sum([0..n], k-> Sum([0..n], j-> T(j,k) )))); # G. C. Greubel, Oct 26 2019
-
A026725:= proc(n,k) option remember;
if n<0 or k<0 then 0;
elif k=0 or k=n then 1;
elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ;
else procname(n-1,k-1)+procname(n-1,k) ;
fi; end proc:seq(add(add(A026725(i,j), j=0..n), i=0..n), n=0..30); # G. C. Greubel, Oct 26 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[j, k], {k,0,n}, {j,0,n}], {n,0,30}] (* G. C. Greubel, Oct 26 2019 *)
-
T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )));
vector(31, n, sum(j=0,n-1, sum(i=0,n-1, T(j,i))) ) \\ G. C. Greubel, Oct 26 2019
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum( sum( T(j, k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 26 2019
A026735
a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026725.
Original entry on oeis.org
1, 1, 2, 3, 6, 9, 15, 28, 43, 71, 130, 201, 331, 597, 928, 1525, 2720, 4245, 6965, 12315, 19280, 31595, 55472, 87067, 142539, 248802, 391341, 640143, 1111864, 1752007, 2863871, 4953162, 7817033, 12770195, 22004810, 34775005, 56779815
Offset: 0
-
T:= function(n,k)
if n<0 then return 0;
elif k=0 or k=n then return 1;
elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
else return T(n-1, k-1) + T(n-1, k);
fi;
end;
List([0..30], n-> Sum([0..Int(n/2)], k-> T(n-k,k) )); # G. C. Greubel, Oct 26 2019
-
A026725:= proc(n,k) option remember;
if n<0 or k<0 then 0;
elif k=0 or k=n then 1;
elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ;
else procname(n-1,k-1)+procname(n-1,k) ;
fi;
end proc:
seq(add(A026725(n-k,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 26 2019
-
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Oct 26 2019 *)
-
T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )));
vector(31, n, sum(j=0,(n-1)\2, T(n-j,j)) ) \\ G. C. Greubel, Oct 26 2019
-
@CachedFunction
def T(n, k):
if (n<0): return 0
elif (k==0 or k==n): return 1
elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum( T(n-j, j) for j in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 26 2019
A026847
a(n) = T(n,m) + T(n,m+1) + ... + T(n,n), where m=[ (n+1)/2 ], T given by A026725.
Original entry on oeis.org
1, 1, 3, 4, 12, 17, 50, 73, 211, 314, 895, 1350, 3805, 5798, 16193, 24872, 68940, 106573, 293526, 456169, 1249622, 1950697, 5318976, 8334539, 22634700, 35582783, 96296410, 151809737, 409573584, 647279131, 1741574006, 2758310121
Offset: 0
A027207
Self-convolution of row n of array T given by A026725.
Original entry on oeis.org
1, 2, 6, 26, 91, 414, 1519, 6980, 26176, 120596, 457880, 2110422, 8076044, 37211408, 143165518, 659264978, 2546261659, 11717539646, 45387607779, 208729977124, 810316893827
Offset: 0
A027208
a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026725.
Original entry on oeis.org
1, 4, 19, 72, 338, 1289, 6027, 23117, 107746, 415058, 1929383, 7456777, 34584731, 134005510, 620344059, 2408498148, 11131638368, 43289074671, 199800878749, 778025282080, 3586777011141, 13982303458588, 64394916131100, 251261623174835, 1156165698462868, 4514741175877259
Offset: 1
A027209
a(n) = Sum_{k=0..n-2} T(n,k) * T(n,k+2), with T given by A026725.
Original entry on oeis.org
1, 7, 34, 173, 741, 3549, 14670, 68683, 279715, 1294598, 5233060, 24052965, 96822587, 442972139, 1778697948, 8110611295, 32516501991, 147897243768, 592346459071, 2688895275974, 10762289869782, 48776681304283, 195143578562778, 883272843800993, 3532739195660162
Offset: 2
A027210
a(n) = Sum_{k=0..n-3} T(n,k) * T(n,k+3), with T given by A026725.
Original entry on oeis.org
1, 9, 57, 298, 1545, 7126, 34603, 151633, 714481, 3049328, 14131926, 59385159, 272409611, 1133433579, 5163641033, 21341122875, 96751092786, 397978832144, 1797722306693, 7369285976135, 33195299823112, 135723491400062, 610027809595308, 2489247495517382, 11168400384253936
Offset: 3
A027211
a(n) = Sum_{k=0..n} (k+1) * A026725(n, k).
Original entry on oeis.org
1, 3, 8, 22, 53, 136, 312, 768, 1712, 4101, 8971, 21082, 45507, 105435, 225347, 516424, 1095353, 2488480, 5246176, 11834584, 24826412, 55677436, 116321132, 259585768, 540454158, 1201026646, 2493149402, 5520322840, 11430160964
Offset: 0
A027212
a(n) = Sum_{k=0..n} (k+1) * A026725(n, n-k).
Original entry on oeis.org
1, 3, 8, 23, 55, 144, 328, 816, 1808, 4358, 9485, 22377, 48097, 111720, 237917, 546161, 1154827, 2626624, 5522464, 12467540, 26092324, 58546544, 122059348, 272479782, 566242186, 1258568324, 2608232758, 5775620396, 11940756076
Offset: 0
Comments