cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A026918 Sum{T(n-k,k)}, 0<=k<=[ n/2 ], T given by A026907.

Original entry on oeis.org

1, 13, 41, 90, 185, 335, 601, 1020, 1729, 2857, 4721, 7710, 12593, 20459, 33241, 53880, 87337, 141421, 229001, 370650, 599921, 970823, 1571041, 2542140, 4113505, 6655945, 10769801, 17426070, 28196249, 45622667
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    LinearRecurrence[{1,3,-2,-3,1,1},{1,13,41,90,185,335},30] (* Harvey P. Dale, Jan 08 2015 *)

Formula

8*Fibonacci(n+5) + (3/4)*[(n-1)(-1)^n - 17(n+3)]. - Ralf Stephan, May 13 2004
G.f. ( -1-12*x-25*x^2-12*x^3-x^4 ) / ( (x^2+x-1)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, May 22 2013

A026919 Uniquification of A026907.

Original entry on oeis.org

1, 13, 28, 44, 46, 67, 90, 91, 118, 148, 154, 181, 198, 217, 239, 256, 298, 343, 348, 370, 391, 442, 484, 496, 553, 613, 627, 650, 676, 742, 758, 811, 849, 883, 958, 993, 1036, 1084, 1117, 1201, 1288, 1358, 1378, 1403, 1471, 1495
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026907.

Programs

  • Mathematica
    A026919= Table[Binomial[n,k] +3*Binomial[n+4,k+2] -18, {n,0,100}, {k,0,n}]//Flatten// Union;
    Table[A026919[[n]], {n,100}] (* G. C. Greubel, Aug 22 2025 *)
  • SageMath
    def A026907(n,k): return binomial(n,k) +3*binomial(n+4,k+2) -18
    A026919= sorted(set(flatten([[A026907(n,k) for k in range(n+1)] for n in range(103)]) ))
    print([A026919[n] for n in range(100)]) # G. C. Greubel, Aug 22 2025

A027170 Triangular array T read by rows (4-diamondization of Pascal's triangle). Step 1: t(n,k) = C(n+2,k+1) + C(n+1,k) + C(n+1,k+1) + C(n,k). Step 2: T(n,k) = t(n,k) - t(0,0) + 1. Domain: 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 3, 3, 5, 10, 5, 7, 19, 19, 7, 9, 30, 42, 30, 9, 11, 43, 76, 76, 43, 11, 13, 58, 123, 156, 123, 58, 13, 15, 75, 185, 283, 283, 185, 75, 15, 17, 94, 264, 472, 570, 472, 264, 94, 17, 19, 115, 362, 740, 1046, 1046, 740, 362, 115, 19, 21, 138, 481, 1106, 1790, 2096, 1790, 1106, 481, 138, 21
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
   1;
   3,  3;
   5, 10,  5;
   7, 19, 19,  7;
   9, 30, 42, 30,  9;
  11, 43, 76, 76, 43, 11;
  ...
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:= Binomial[n + 2, k + 1] + Binomial[n + 1, k] + Binomial[n + 1, k + 1] + Binomial[n ,k]; T[n_, k_] := t[n, k] - t[0, 0] + 1; Flatten[Table[T[n, k], {n, 0, 10},{k, 0, n}]] (* Indranil Ghosh, Mar 13 2017 *)
  • PARI
    alias(C, binomial);
    t(n,k) = C(n+2,k+1)+C(n+1,k)+C(n+1,k+1)+C(n,k);
    T(n,k) = t(n,k)-t(0,0)+1;
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print());
    \\ Michel Marcus, Mar 13 2017
Previous Showing 11-13 of 13 results.