cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A226477 Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.

Original entry on oeis.org

1, 3, 9, 11, 33, 99, 27, 37, 111, 333, 999, 101, 303, 909, 1111, 3333, 9999, 41, 123, 271, 369, 813, 2439, 11111, 33333, 99999, 7, 13, 21, 39, 63, 77, 91, 117, 143, 189, 231, 259, 273, 297, 351, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2079, 2331, 2457, 2849, 3003, 3367, 3663, 3861, 4329, 5291, 6993, 8547, 9009, 10101, 10989, 12987, 15873, 25641, 27027, 30303, 37037, 47619, 76923, 90909, 111111, 142857, 333333, 999999
Offset: 1

Views

Author

Martin Renner, Jun 08 2013

Keywords

Comments

The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
The number of elements in row k is A059892(k).

Examples

			The table T(k,m), m = 1..A059892(k), begins
  1, 3, 9;
  11, 33, 99;
  27, 37, 111, 333, 999;
  etc.
		

Crossrefs

Programs

  • Maple
    a:=[1,3,9]: S:={1,3,9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a),op(T minus S)]: S:=S union T; od: a;
  • PARI
    Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10,x))==n), v) \\ Jianing Song, Jun 15 2021

A197318 Divisors of the repunit 111111111111 = A002275(12).

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 101, 111, 143, 231, 259, 273, 303, 407, 429, 481, 707, 777, 1001, 1111, 1221, 1313, 1443, 2121, 2849, 3003, 3333, 3367, 3737, 3939, 5291, 7777, 8547, 9191, 9901, 10101, 11211, 14443, 15873, 23331, 26159, 27573, 29703
Offset: 1

Views

Author

M. F. Hasler, Oct 13 2011

Keywords

Comments

The sequence is marked "full" since even though they don't fit into the three lines above, all 128 terms are known and available in the b-file or using the given PARI code.

Crossrefs

Programs

  • Mathematica
    Divisors[111111111111] (* Paolo Xausa, Jul 04 2024 *)
  • PARI
    divisors(1e12\9)

A345319 Numbers whose reciprocals have period 10.

Original entry on oeis.org

451, 1353, 2981, 4059, 8943, 9091, 26829, 27273, 81819, 100001, 122221, 300003, 366663, 372731, 900009, 1099989, 1118193, 2463661, 3354579, 4100041, 7390983, 12300123, 22172949, 27100271, 36900369, 81300813, 101010101, 243902439, 303030303, 909090909, 1111111111, 3333333333, 9999999999
Offset: 1

Views

Author

Tanya Khovanova, Jun 13 2021

Keywords

Comments

Equivalently, these are numbers k such that the multiplicative order of 10 modulo k is 10.
These are indices of terms at which 10 appears in A084680.
There are exactly A059892(10) = mu(10/10)*d(10^10-1) + mu(10/5)*d(10^5-1) + mu(10/2)*d(10^2-1) + mu(10/1)*d(10^1-1) = 48 - 12 - 6 + 3 = 33 terms, where d = A000005 and mu = A008683. - Jianing Song, Jun 15 2021

Examples

			1/451 = 0.00221729490022172949002217294900..., whose periodic part is 0022172949.
		

Crossrefs

Subsequence of A027895.
10th row of A226477.

Programs

  • Mathematica
    Select[Range[100000000], MultiplicativeOrder[10, #] == 10 &]
  • PARI
    isok(k) = gcd(k, 10) && (znorder(Mod(10, k)) == 10); \\ Michel Marcus, Jun 14 2021
    
  • PARI
    my(v=divisors(10^10-1)); select(x->(znorder(Mod(10,x))==10), v) \\ Jianing Song, Jun 15 2021

Extensions

a(27)-a(28) from Jinyuan Wang, Jun 13 2021
a(29)-a(33) from Jianing Song, Jun 15 2021
Previous Showing 11-13 of 13 results.