cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A027935 Triangular array T read by rows: T(n,k)=t(n,2k), t given by A027926; 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 7, 1, 1, 2, 5, 12, 11, 1, 1, 2, 5, 13, 26, 16, 1, 1, 2, 5, 13, 33, 51, 22, 1, 1, 2, 5, 13, 34, 79, 92, 29, 1, 1, 2, 5, 13, 34, 88, 176, 155, 37, 1, 1, 2, 5, 13, 34, 89, 221, 365, 247, 46, 1, 1, 2, 5, 13, 34, 89, 232, 530, 709, 376, 56, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 1;
  1, 2, 4,  1:
  1, 2, 5,  7,  1;
  1, 2, 5, 12, 11,  1;
  1, 2, 5, 13, 26, 16, 1;
  ...
		

Crossrefs

The row sums of this bisection of the "Fibonacci array" A027926 are powers of 2, see A027948 for the other bisection.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..Int((2*n-2*k+1)/2) ], j-> Binomial(n-j, 2*(n-k-j))) ))); # G. C. Greubel, Sep 27 2019
  • Magma
    T:= func< n,k | &+[Binomial(n-j, 2*(n-k-j)) : j in [0..Floor((2*n -2*k+1)/2)]] >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2019
    
  • Maple
    T:= proc(n, k) option remember;
         add( binomial(n-j, 2*(n-k-j)), j=0..floor((2*n - 2*k+1)/2))
       end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Sep 27 2019
  • Mathematica
    T[n_, k_]:= Sum[Binomial[n-j, 2*(n-k-j)], {j,0,Floor[(2*n-2*k+1)/2]}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 27 2019 *)
  • PARI
    T(n,k) = sum(j=0,(2*n-2*k+1)\2, binomial(n-j, 2*(n-k-j)));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 27 2019
    
  • Sage
    [[ sum(binomial(n-j, 2*(n-k-j)) for j in (0..floor((2*n-2*k+1)/2)) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 27 2019
    

Formula

T(n,k) = Sum_{j=0..floor((2*n-2*k-1)/2)} binomial(n-j, 2*(n-k-j)). - G. C. Greubel, Sep 27 2019

A027953 a(0)=1, a(n) = Fibonacci(2n+4) - (2n+3).

Original entry on oeis.org

1, 3, 14, 46, 133, 364, 972, 2567, 6746, 17690, 46345, 121368, 317784, 832011, 2178278, 5702854, 14930317, 39088132, 102334116, 267914255, 701408690, 1836311858, 4807526929, 12586268976, 32951280048, 86267571219, 225851433662
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..40], n-> Fibonacci(2*n+4) -(3 +2*n) )); # G. C. Greubel, Sep 29 2019
  • Magma
    [1] cat [Fibonacci(2*n+4) -(3 +2*n): n in [1..40]]; // G. C. Greubel, Sep 29 2019
    
  • Maple
    with(combinat); seq(`if`(n=0,1, fibonacci(2*n+4) -(3 +2*n)), n=0..40); # G. C. Greubel, Sep 29 2019
  • Mathematica
    Join[{1},Table[Fibonacci[2n+4]-(2n+3),{n,30}]] (* or *) LinearRecurrence[ {5,-8,5,-1},{1,3,14,46,133},30] (* Harvey P. Dale, Oct 04 2017 *)
  • PARI
    vector(40, n, my(m=n-1); if(m==0, 1, fibonacci(2*m+4) -(3 +2*m)) ) \\ G. C. Greubel, Sep 29 2019
    
  • Sage
    [1]+[fibonacci(2*n+4) -(3 +2*n) for n in (1..40)] # G. C. Greubel, Sep 29 2019
    

Formula

a(n) = T(2n+1, n+1), T given by A027948.
G.f.: (1-2*x+7*x^2-5*x^3+x^4)/((1-3*x+x^2)*(1-x)^2). - Vladeta Jovovic, Mar 27 2003
a(n) = Sum_{j=0..n} binomial(2*n-j+1, j+2), with a(0)=1. - G. C. Greubel, Sep 29 2019

Extensions

More terms from Vladeta Jovovic, Mar 27 2003
Previous Showing 11-12 of 12 results.