cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A201863 Let CZ(0,x)=1, CZ(1,x)=0 , CZ(2,x)=x^2-1 and CZ(n,x)=2*x*CZ(n-1,x) - CZ(n-2,x) for n > 2. This sequence is the triangle of polynomial coefficients in order of decreasing exponents.

Original entry on oeis.org

1, 0, 0, 1, 0, -1, 2, 0, -2, 0, 4, 0, -5, 0, 1, 8, 0, -12, 0, 4, 0, 16, 0, -28, 0, 13, 0, -1, 32, 0, -64, 0, 38, 0, -6, 0, 64, 0, -144, 0, 104, 0, -25, 0, 1, 128, 0, -320, 0, 272, 0, -88, 0, 8, 0, 256, 0, -704, 0, 688, 0, -280, 0, 41, 0, -1
Offset: 0

Views

Author

Paul Curtz, Dec 06 2011

Keywords

Comments

From (A039991 without 0's=) A028297 we wrote in A201509
1, 1,
2, 2,
4, 5, 1,
8, 12, 4.
Hence a(n) first coefficients:
1,
0, 0
1, 0,- 1, x^2-1,
2, 0, -2, 0,
4, 0, -5, 0, 1
8, 0,-12, 0, 4, 0.
The first 1 is a choice.
Row sums=0.
Absolute value row sums: 1 before A163271.
First vertical:A034008=1 before A131577. Third:-A045623.
Mirror image of triangle in A076626. - Philippe Deléham, Dec 07 2011

Crossrefs

A028298 Triangle of coefficients in expansion of sin(n*x) (or sin(n*x)/cos(x) if n is even) in ascending powers of sin(x).

Original entry on oeis.org

1, 2, 3, -4, 4, -8, 5, -20, 16, 6, -32, 32, 7, -56, 112, -64, 8, -80, 192, -128, 9, -120, 432, -576, 256, 10, -160, 672, -1024, 512, 11, -220, 1232, -2816, 2816, -1024, 12, -280, 1792, -4608, 5120, -2048, 13, -364, 2912, -9984, 16640, -13312, 4096, 14, -448, 4032, -15360, 28160, -24576, 8192, 15, -560, 6048
Offset: 1

Views

Author

Keywords

Comments

Rows have ceiling(n/2) terms.

Examples

			Triangle begins:
   1;
   2;
   3,   -4;
   4,   -8;
   5,  -20,  16;
   6,  -32,  32;
   7,  -56, 112,   -64;
   8,  -80, 192,  -128;
   9, -120, 432,  -576, 256;
  10, -160, 672, -1024, 512;
  ...
sin 3x = 3 sin x - 4 sin^3 x;
sin 4x / cos x = 4 sin x - 8 sin^3 x, etc.
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.

Crossrefs

Cf. A028297.

Programs

  • Mathematica
    t[n_] := (Sin[n x]/If[EvenQ[n], Cos[x], 1] // TrigExpand) /. Cos[x]^m_ /; EvenQ[m] -> (1 - Sin[x]^2)^(m/2) // Expand; Flatten[Table[ Partition[ CoefficientList[t[n], Sin[x]] , 2][[All, 2]], {n, 1, 15}]][[1 ;; 59]]  (* Jean-François Alcover, May 06 2011 *)
  • Maxima
    T(n,k):=(-1)^k*((n-2*k)*(-1)^n-n-2*k)/(2*n+(-1)^n-1+4*k)*2^(2*k+((-1)^n-1)/2)*binomial((2*n+(-1)^n-1)/4+k,(2*n-(-1)^n+1)/4-k); /* Tani Akinari, Jul 15 2024 */

Formula

T(n,k) = (-1)^k*((n-2*k)*(-1)^n-n-2*k)/(2*n+(-1)^n-1+4*k)*2^(2*k+((-1)^n-1)/2)*binomial((2*n+(-1)^n-1)/4+k,(2*n-(-1)^n+1)/4-k). - Tani Akinari, Jul 15 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 08 2000

A228637 The number triangle associated with the polynomials V_n(x).

Original entry on oeis.org

1, -1, 1, -1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 5, 1, -1, 1, 41, 29, 7, 1, -1, 1, 153, 169, 55, 9, 1, 1, 1, 571, 985, 433, 89, 11, 1, 1, 1, 2131, 5741, 3409, 881, 131, 13, 1, -1, 1, 7953, 33461, 26839, 8721, 1561, 181, 15, 1
Offset: 0

Views

Author

Jonny Griffiths, Aug 28 2013

Keywords

Comments

V(n) is the polynomial with integer coefficients in x given by cos((2n+1)(arccos(x)/2))/(arccos(x)/2). The triangle here is given by V_0(0), V_1(0), V_0(1), V_2(0), V_1(1), V_0(2), V_3(0), V_2(1), V_1(2), V_0(3), V_4(0),....

Examples

			V_0(x)=1, V_1(x)=2x-1, V_2(x)=4x^2-2x-1,  ...
		

Crossrefs

Formula

The terms are given by the recurrence relation V_{n+1}(x) = 2xV_n(x)-V_{n-1}(x), V_0(x) = 1, V_1(x)=2x-1.

A340554 T(n, k) = [x^k] hypergeom([-2^n/2, -2^n/2 - 1/2], [1/2], x). Triangle read by rows, T(n, k) for n >= 0.

Original entry on oeis.org

1, 1, 1, 3, 1, 10, 5, 1, 36, 126, 84, 9, 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17, 1, 528, 40920, 1107568, 13884156, 92561040, 354817320, 818809200, 1166803110, 1037158320, 573166440, 193536720, 38567100, 4272048, 237336, 5456, 33
Offset: 0

Views

Author

Peter Luschny, Feb 03 2021

Keywords

Examples

			Triangle starts:
                           [0] 1, 1
                           [1] 1, 3
                         [2] 1, 10, 5
                     [3] 1, 36, 126, 84, 9
     [4] 1, 136, 2380, 12376, 24310, 19448, 6188, 680, 17
		

Crossrefs

Cf. A001146 (row sums), A000051 (main diagonal), A016131 (central terms), A201461, A028297.

Programs

  • Magma
    p:= func< n | n eq 0 select 1 else 2^(n-1) >;
    T:= func< n,k | Factorial(2^n+1)/(Factorial(2*k)*Factorial(2^n-2*k+1)) >;
    [T(n,k): k in [0..p(n)], n in [0..8]]; // G. C. Greubel, Dec 30 2024
    
  • Maple
    CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
    Tpoly := proc(n) simplify(hypergeom([-2^n/2, -2^n/2 - 1/2], [1/2], x)):
    CoeffList(%) end: seq(Tpoly(n), n = 0..5);
  • Mathematica
    Tpoly[n_] := HypergeometricPFQ[{-2^n/2, -2^n/2 - 1/2}, {1/2}, x];
    Table[CoefficientList[Tpoly[n], x], {n, 0, 5}] // Flatten
  • SageMath
    # from sage.all import * # (use for Python)
    def p(n): return 1 if n==0 else pow(2,n-1)
    def T(n,k): return rising_factorial(-pow(2,n)-1, 2*k)/factorial(2*k)
    print(flatten([[T(n,k) for k in range(p(n)+1)] for n in range(8)])) # G. C. Greubel, Dec 30 2024

Formula

T(n, k) = (2^n + 1)!/((2*k)! * (2^n - 2*k + 1)!), for n >= 0, 0 <= k <= p(n), where p(n) = 1 if n = 0 otherwise p(n) = 2^(n-1). Alternative form: T(n, k) = Pochhammer(-2^n - 1, 2*k)/(2*k)!. - G. C. Greubel, Dec 30 2024

A228356 The triangle associated with the family of polynomials W_n(x).

Original entry on oeis.org

1, 1, 1, -1, 3, 1, -1, 5, 5, 1, 1, 7, 19, 7, 1, 1, 9, 71, 41, 9, 1, -1, 11, 265, 239, 71, 11, 1, -1, 13, 989, 1393, 559, 109, 13, 1, 1, 15, 3691, 8119, 4401, 1079, 155, 15, 1, 1, 17, 13775, 47321, 34649, 10681, 1847, 209, 17, 1
Offset: 0

Views

Author

Jonny Griffiths, Aug 28 2013

Keywords

Comments

W_n(x) is the family of polynomials in x with integer coefficients given by W_n(x) = sin((2n+1)arccos(x)/2)/(sin(arccos(x)/2)).
These polynomials are intimately linked with the Chebyshev polynomials of the first and second kinds, and represent the polynomials associated with the Dirichlet kernel.

Examples

			The triangle is given here as W_0(0)=1, W_1(0)=1, W_0(1)=1, W_2(0)=-1, W_1(1)=3, W_0(2)=1, W_3(0)=-1, W_2(1)=5 ...
		

Crossrefs

Programs

  • Mathematica
    W[0, ] = 1; W[1, x] := 2 x + 1; W[n_, x_] := W[n, x] = 2 x W[n - 1, x] - W[n - 2, x]; Table[W[n - x, x] , {n, 0, 9}, {x, 0, n}] // Flatten (* Jean-François Alcover, Jun 11 2017 *)

Formula

W_{n+1} = 2xW_n(x) - W_{n-1}, W_0(x)=1, W_1(x)=2x+1.
Previous Showing 21-25 of 25 results.