A323358
Number of distinct automorphism group sizes for binary self-dual codes of length 2n such that multiple same length binary self-dual codes with different weight distributions share the same automorphism group size.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 17, 55, 117, 226, 343, 535
Offset: 1
There are a(18) = 535 automorphism group sizes for the binary self-dual codes of length 2*18 = 36 where codes having different weight distributions share the same automorphism group size.
A368493
T(n,m) is the number of m-dimensional isotropic subspaces of a 2n-dimensional symplectic space over Z/2, n >= 0 and 0 <= m <= n.
Original entry on oeis.org
1, 1, 3, 1, 15, 15, 1, 63, 315, 135, 1, 255, 5355, 11475, 2295, 1, 1023, 86955, 782595, 782595, 75735, 1, 4095, 1396395, 50868675, 213648435, 103378275, 4922775, 1, 16383, 22362795, 3268162755, 55558766835, 112909751955, 26883274275, 635037975
Offset: 0
Triangle begins:
1;
1, 3;
1, 15, 15;
1, 63, 315, 135;
1, 255, 5355, 11475, 2295;
1, 1023, 86955, 782595, 782595, 75735;
1, 4095, 1396395, 50868675, 213648435, 103378275, 4922775;
...
-
T[n_,m_]:=Product[(2^(2i)-1),{i,n-m+1,n}]/Product[(2^i-1),{i,1,m}]; Table[T[n,m],{n,0,7},{m,0,n}] (* Stefano Spezia, Dec 28 2023 *)
-
T(n,m) = prod(i=n-m+1, n, 2^(2*i)-1)/prod(i=1, m, 2^i-1); \\ Michel Marcus, Dec 27 2023
-
from math import prod
q = 2
N = lambda n, m : (prod([q**(2*i)-1 for i in range(n-m+1, n+1)])//prod([q**i-1 for i in range(1, m+1)]))
print([N(n, m) for n in range(8) for m in range(n+1)])
Comments