cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A294837 Expansion of Product_{k>=1} (1 + x^k)^(k*(5*k-3)/2).

Original entry on oeis.org

1, 1, 7, 25, 73, 236, 688, 1994, 5573, 15272, 40896, 107526, 277999, 707209, 1774067, 4390665, 10734216, 25941541, 62022609, 146793160, 344129900, 799517074, 1841734224, 4208327222, 9542121050, 21477834062, 48005313446, 106579556936, 235107392079, 515441826521, 1123360284127, 2434346065621
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the heptagonal numbers (A000566).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(5*n-3)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (5 d - 3)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000566(k).
a(n) ~ 7^(1/8) * exp(2*Pi*7^(1/4) * n^(3/4) / 3^(5/4) - 9*Zeta(3) * sqrt(3*n/7) /(2*Pi^2) - 243*Zeta(3)^2 * (3*n/7)^(1/4) / (28*Pi^5) - 2187*Zeta(3)^3 / (98*Pi^8)) / (2^(15/8) * 3^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(5*d-3)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294838 Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-2)).

Original entry on oeis.org

1, 1, 8, 29, 89, 301, 915, 2763, 8040, 22910, 63776, 174174, 467448, 1233836, 3209679, 8234149, 20857621, 52206847, 129227514, 316543962, 767767628, 1844925743, 4394337797, 10379319118, 24320964976, 56557678603, 130571770387, 299357973400, 681777058604, 1542840256421, 3470045577372
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the octagonal numbers (A000567).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(3*n-2), g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 2), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000567(k).
a(n) ~ exp(-1800*Zeta(3)^3 / (49*Pi^8) - (9 * 2^(3/4) * 5^(5/4) * Zeta(3)^2 / (7^(5/4)*Pi^5)) * n^(1/4) - (3*sqrt(10/7) * Zeta(3) / Pi^2) * sqrt(n) + (2*(14/5)^(1/4) * Pi/3) * n^(3/4)) * 7^(1/8) / (2^(41/24) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-2)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A305206 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^n)).

Original entry on oeis.org

1, 1, 2, 9, 36, 190, 1070, 6797, 46942, 350901, 2806187, 23894662, 215598410, 2053090936, 20557071012, 215697357449, 2364810631734, 27023086395647, 321160376470277, 3962047673946906, 50648323260067319, 669819485900273336, 9150740338219903590, 128965789655207156299
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
    Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[n + k - 2, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = [x^n] Product_{k>=1} (1 + x^k)^binomial(n+k-2,n-1).

A294836 Expansion of Product_{k>=1} (1 + x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, 1, 6, 21, 58, 178, 494, 1365, 3640, 9533, 24401, 61384, 151958, 370335, 890565, 2113913, 4959199, 11505799, 26420628, 60082005, 135386341, 302448477, 670148898, 1473387787, 3215519032, 6968266907, 14999453058, 32079714584, 68187859040, 144083404856, 302727633735, 632579826174
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal numbers (A000384).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(2*n-1), g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k)^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000384(k).
a(n) ~ 7^(1/8) * exp(Pi*2^(3/2) * (7/15)^(1/4) * n^(3/4)/3 - 3*Zeta(3)*sqrt(15*n/7) / (2*Pi^2) - 135*Zeta(3)^2 * (15*n/7)^(1/4) / (28*sqrt(2)*Pi^5) - 2025*Zeta(3)^3 / (196*Pi^8)) / (2^(5/3) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(2*d-1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294846 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(k+1)/2).

Original entry on oeis.org

1, -1, -2, -4, 0, 3, 17, 24, 40, 9, -24, -149, -250, -435, -395, -281, 514, 1528, 3542, 5127, 6920, 5416, 1368, -11136, -28533, -57051, -82846, -107315, -95655, -43646, 107826, 345877, 727771, 1150968, 1601729, 1766547, 1495154, 183944, -2339567, -6770991, -12701854
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Convolution inverse of A028377.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(n+1)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 + x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]

Formula

G.f.: Product_{k>=1} 1/(1 + x^k)^A000217(k).
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(d+1)*(-1)^(n/d). - Seiichi Manyama, Nov 14 2017

A292386 Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)/2).

Original entry on oeis.org

1, -1, -3, -3, -1, 10, 20, 36, 28, -11, -103, -245, -397, -448, -214, 464, 1817, 3680, 5660, 6473, 4362, -3232, -18428, -41946, -70589, -94890, -96996, -49673, 78907, 317995, 673299, 1105044, 1491333, 1605102, 1094914, -479358, -3561322, -8404118, -14781724, -21595744, -26450603, -25329527
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 15 2017

Keywords

Comments

Convolution inverse of A000294 (Euler transform of the triangular numbers).

Crossrefs

Programs

  • Mathematica
    nmax = 41; CoefficientList[Series[Product[(1 - x^k)^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: -binomial(n+1, 2))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>=1} (1 - x^k)^(k*(k+1)/2).

A294843 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(4*k-1)/6).

Original entry on oeis.org

1, 1, 7, 29, 93, 320, 1026, 3256, 9995, 30102, 88722, 257042, 732876, 2058370, 5703858, 15606076, 42203027, 112882223, 298849221, 783574536, 2035876825, 5244191462, 13398463986, 33967008194, 85476285603, 213583335753, 530099612487, 1307195997381, 3203555001240, 7804386224233
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal pyramidal numbers (A002412).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)(4 d - 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002412(k).
a(n) ~ exp(-2401 * Pi^16 / (671846400000000 * Zeta(5)^3) - 49*Pi^8 * Zeta(3) / (518400000 * Zeta(5)^2) - Zeta(3)^2 / (2400*Zeta(5)) + (343 * Pi^12 / (77760000000 * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4*Zeta(3) / (72000 * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (8640000 * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (8 * (15*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (720 * (15*Zeta(5))^(3/5))) * n^(3/5) + (5*(15*Zeta(5))^(1/5)/4) * n^(4/5)) * (3*Zeta(5))^(1/10) / (2^(173/360) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A327063 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^j).

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 8, 11, 15, 24, 34, 43, 63, 87, 115, 159, 217, 279, 380, 505, 657, 868, 1139, 1458, 1913, 2482, 3162, 4069, 5232, 6628, 8469, 10755, 13544, 17127, 21634, 27061, 33988, 42557, 52985, 66069, 82289, 101862, 126281, 156275, 192655, 237530, 292502
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[Product[(1+x^(k*j))^j, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327064 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^k).

Original entry on oeis.org

1, 1, 2, 5, 10, 18, 35, 62, 110, 197, 339, 573, 975, 1621, 2674, 4385, 7108, 11422, 18277, 28976, 45648, 71531, 111372, 172416, 265695, 407210, 621143, 943392, 1426414, 2147672, 3221271, 4812534, 7163440, 10625651, 15706871, 23141148, 33987287, 49762235
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^k, {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]

A327065 Expansion of Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))^(k*j)).

Original entry on oeis.org

1, 1, 2, 5, 12, 20, 42, 75, 141, 259, 466, 799, 1427, 2443, 4169, 7049, 11863, 19605, 32518, 53184, 86579, 140018, 225380, 359739, 572864, 905903, 1426270, 2234952, 3488313, 5416403, 8383226, 12917257, 19831763, 30334937, 46245977, 70242043, 106371686
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[Product[(1+x^(k*j))^(k*j), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x]
Previous Showing 11-20 of 33 results. Next