cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A294102 Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-1)/2).

Original entry on oeis.org

1, 1, 5, 17, 44, 127, 332, 866, 2182, 5412, 13119, 31292, 73516, 170136, 388829, 877653, 1959111, 4327221, 9464856, 20511598, 44067446, 93901142, 198539477, 416696608, 868448305, 1797890682, 3698350956, 7561361750, 15369154555, 31064311255, 62449795986, 124895635385, 248538538858, 492207649241
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the pentagonal numbers (A000326).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(3*n-1)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000326(k).
a(n) ~ exp(-225*Zeta(3)^3 / (98*Pi^8) - 9 * 5^(5/4) * Zeta(3)^2 / (4 * 7^(5/4) * Pi^5) * n^(1/4) - (3*sqrt(5/7) * Zeta(3) / (2*Pi^2)) * sqrt(n) + (2 * (7/5)^(1/4) * Pi / 3) * n^(3/4)) * 7^(1/8) / (2^(47/24) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294837 Expansion of Product_{k>=1} (1 + x^k)^(k*(5*k-3)/2).

Original entry on oeis.org

1, 1, 7, 25, 73, 236, 688, 1994, 5573, 15272, 40896, 107526, 277999, 707209, 1774067, 4390665, 10734216, 25941541, 62022609, 146793160, 344129900, 799517074, 1841734224, 4208327222, 9542121050, 21477834062, 48005313446, 106579556936, 235107392079, 515441826521, 1123360284127, 2434346065621
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the heptagonal numbers (A000566).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(5*n-3)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (5 d - 3)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000566(k).
a(n) ~ 7^(1/8) * exp(2*Pi*7^(1/4) * n^(3/4) / 3^(5/4) - 9*Zeta(3) * sqrt(3*n/7) /(2*Pi^2) - 243*Zeta(3)^2 * (3*n/7)^(1/4) / (28*Pi^5) - 2187*Zeta(3)^3 / (98*Pi^8)) / (2^(15/8) * 3^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(5*d-3)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294838 Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-2)).

Original entry on oeis.org

1, 1, 8, 29, 89, 301, 915, 2763, 8040, 22910, 63776, 174174, 467448, 1233836, 3209679, 8234149, 20857621, 52206847, 129227514, 316543962, 767767628, 1844925743, 4394337797, 10379319118, 24320964976, 56557678603, 130571770387, 299357973400, 681777058604, 1542840256421, 3470045577372
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the octagonal numbers (A000567).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(3*n-2), g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 2), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000567(k).
a(n) ~ exp(-1800*Zeta(3)^3 / (49*Pi^8) - (9 * 2^(3/4) * 5^(5/4) * Zeta(3)^2 / (7^(5/4)*Pi^5)) * n^(1/4) - (3*sqrt(10/7) * Zeta(3) / Pi^2) * sqrt(n) + (2*(14/5)^(1/4) * Pi/3) * n^(3/4)) * 7^(1/8) / (2^(41/24) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-2)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294843 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(4*k-1)/6).

Original entry on oeis.org

1, 1, 7, 29, 93, 320, 1026, 3256, 9995, 30102, 88722, 257042, 732876, 2058370, 5703858, 15606076, 42203027, 112882223, 298849221, 783574536, 2035876825, 5244191462, 13398463986, 33967008194, 85476285603, 213583335753, 530099612487, 1307195997381, 3203555001240, 7804386224233
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal pyramidal numbers (A002412).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)(4 d - 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002412(k).
a(n) ~ exp(-2401 * Pi^16 / (671846400000000 * Zeta(5)^3) - 49*Pi^8 * Zeta(3) / (518400000 * Zeta(5)^2) - Zeta(3)^2 / (2400*Zeta(5)) + (343 * Pi^12 / (77760000000 * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4*Zeta(3) / (72000 * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (8640000 * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (8 * (15*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (720 * (15*Zeta(5))^(3/5))) * n^(3/5) + (5*(15*Zeta(5))^(1/5)/4) * n^(4/5)) * (3*Zeta(5))^(1/10) / (2^(173/360) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A295121 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, -1, -5, -10, 3, 42, 124, 160, 15, -677, -1941, -3425, -2807, 3488, 21004, 49547, 77879, 63395, -65104, -406091, -988889, -1655508, -1779329, -145347, 5087175, 15405270, 30158849, 42617486, 36116136, -19457047, -161973496, -418712896, -759063566
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(2*n-1), g(n) = -1.

Crossrefs

Cf. A294846 (b=3), A284896 (b=4), A295086 (b=5), this sequence (b=6), A295122 (b=7), A295123 (b=8).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(2*k-1))))

Formula

Convolution inverse of A294836.
G.f.: Product_{k>=1} 1/(1 + x^k)^A000384(k).
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(2*d-1)*(-1)^(n/d).

A318124 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^3)).

Original entry on oeis.org

1, 1, 2, 9, 31, 127, 494, 1994, 8040, 32741, 133855, 549775, 2266756, 9372300, 38862245, 161500403, 672538548, 2805669061, 11723319333, 49055511943, 205534846202, 862167483656, 3620429584614, 15217780335870, 64022149180478, 269566679312520, 1135878674712355
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the weigh transform of n-gonal numbers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + (n - 3) x^k)/(k (1 - x^k)^3), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.2950655312028649462400... and c = 0.204576644650802181512... - Vaclav Kotesovec, Aug 19 2018
Showing 1-6 of 6 results.