cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A294837 Expansion of Product_{k>=1} (1 + x^k)^(k*(5*k-3)/2).

Original entry on oeis.org

1, 1, 7, 25, 73, 236, 688, 1994, 5573, 15272, 40896, 107526, 277999, 707209, 1774067, 4390665, 10734216, 25941541, 62022609, 146793160, 344129900, 799517074, 1841734224, 4208327222, 9542121050, 21477834062, 48005313446, 106579556936, 235107392079, 515441826521, 1123360284127, 2434346065621
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the heptagonal numbers (A000566).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(5*n-3)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (5 d - 3)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000566(k).
a(n) ~ 7^(1/8) * exp(2*Pi*7^(1/4) * n^(3/4) / 3^(5/4) - 9*Zeta(3) * sqrt(3*n/7) /(2*Pi^2) - 243*Zeta(3)^2 * (3*n/7)^(1/4) / (28*Pi^5) - 2187*Zeta(3)^3 / (98*Pi^8)) / (2^(15/8) * 3^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(5*d-3)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294838 Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-2)).

Original entry on oeis.org

1, 1, 8, 29, 89, 301, 915, 2763, 8040, 22910, 63776, 174174, 467448, 1233836, 3209679, 8234149, 20857621, 52206847, 129227514, 316543962, 767767628, 1844925743, 4394337797, 10379319118, 24320964976, 56557678603, 130571770387, 299357973400, 681777058604, 1542840256421, 3470045577372
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the octagonal numbers (A000567).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(3*n-2), g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 2), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000567(k).
a(n) ~ exp(-1800*Zeta(3)^3 / (49*Pi^8) - (9 * 2^(3/4) * 5^(5/4) * Zeta(3)^2 / (7^(5/4)*Pi^5)) * n^(1/4) - (3*sqrt(10/7) * Zeta(3) / Pi^2) * sqrt(n) + (2*(14/5)^(1/4) * Pi/3) * n^(3/4)) * 7^(1/8) / (2^(41/24) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-2)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294842 Expansion of Product_{k>=1} (1 + x^k)^(k^2*(k+1)/2).

Original entry on oeis.org

1, 1, 6, 24, 73, 238, 722, 2175, 6343, 18177, 50982, 140671, 382227, 1023623, 2706184, 7067324, 18250671, 46635309, 117997008, 295794098, 735030985, 1811435607, 4429226677, 10749552338, 25903858181, 62000039513, 147435739522, 348431110651, 818549931526, 1912010876019, 4441687009798
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the pentagonal pyramidal numbers (A002411).

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^3 (d + 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002411(k).
a(n) ~ exp(-2401 * Pi^16 / (2^12 * 3^11 * 5^8 * Zeta(5)^3) + (343 * Pi^12 / (2^(38/5) * 3^(37/5) * 5^(36/5) * Zeta(5)^(11/5))) * n^(1/5) - (49*Pi^8 / (2^(31/5) * 3^(24/5) * 5^(22/5) * Zeta(5)^(7/5))) * n^(2/5) + (7*Pi^4 / (2^(14/5) * 3^(16/5) * 5^(8/5) * Zeta(5)^(3/5))) * n^(3/5) + (5 * 3^(2/5) * (5*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)) * 3^(1/5) * Zeta(5)^(1/10) / (2^(167/240) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A294836 Expansion of Product_{k>=1} (1 + x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, 1, 6, 21, 58, 178, 494, 1365, 3640, 9533, 24401, 61384, 151958, 370335, 890565, 2113913, 4959199, 11505799, 26420628, 60082005, 135386341, 302448477, 670148898, 1473387787, 3215519032, 6968266907, 14999453058, 32079714584, 68187859040, 144083404856, 302727633735, 632579826174
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal numbers (A000384).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(2*n-1), g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k)^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000384(k).
a(n) ~ 7^(1/8) * exp(Pi*2^(3/2) * (7/15)^(1/4) * n^(3/4)/3 - 3*Zeta(3)*sqrt(15*n/7) / (2*Pi^2) - 135*Zeta(3)^2 * (15*n/7)^(1/4) / (28*sqrt(2)*Pi^5) - 2025*Zeta(3)^3 / (196*Pi^8)) / (2^(5/3) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(2*d-1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A295086 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(3*k-1)/2).

Original entry on oeis.org

1, -1, -4, -8, 1, 24, 78, 111, 75, -249, -876, -1847, -2251, -871, 5170, 17052, 34742, 47176, 34576, -44016, -224561, -530104, -875149, -1030871, -475480, 1488315, 5658668, 12109163, 19411024, 22693048, 12926630, -24000623, -102605376, -230257606, -386964449
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(3*n-1)/2, g(n) = -1.

Crossrefs

Cf. A294846 (b=3), A284896 (b=4), this sequence (b=5), A295121 (b=6), A295122 (b=7), A295123 (b=8).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(3*k-1)/2)))

Formula

Convolution inverse of A294102.
G.f.: Product_{k>=1} 1/(1 + x^k)^A000326(k).
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-1)*(-1)^(n/d).

A294839 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(k*(3*k-1)/2)*(1 + x^(2*k))^(k*(3*k+1)/2).

Original entry on oeis.org

1, 1, 2, 7, 13, 30, 61, 125, 250, 494, 960, 1835, 3487, 6520, 12105, 22239, 40515, 73207, 131315, 233831, 413625, 727100, 1270405, 2207243, 3814155, 6557164, 11217391, 19099932, 32375026, 54640509, 91836697, 153739008, 256379360, 425964293, 705197513, 1163452547, 1913096832, 3135609791
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the generalized pentagonal numbers (A001318).

Crossrefs

Programs

  • Mathematica
    nmax = 37; CoefficientList[Series[Product[(1 + x^(2 k - 1))^(k (3 k - 1)/2) (1 + x^(2 k))^(k (3 k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Ceiling[d/2] Ceiling[(3 d + 1)/2]/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 37}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A001318(k).
a(n) ~ exp(Pi*sqrt(2) * 7^(1/4) * n^(3/4) / (3*5^(1/4)) + 9*Zeta(3) * sqrt(5*n/7) / (4*Pi^2) + (7*Pi^6 - 2430*Zeta(3)^2) * (5/7)^(1/4) * n^(1/4) / (336 * sqrt(2) * Pi^5) + 15*Zeta(3)*(3240*Zeta(3)^2 - 7*Pi^6) / (3136*Pi^8)) * 7^(1/8) / (2^(9/4) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017

A318124 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^3)).

Original entry on oeis.org

1, 1, 2, 9, 31, 127, 494, 1994, 8040, 32741, 133855, 549775, 2266756, 9372300, 38862245, 161500403, 672538548, 2805669061, 11723319333, 49055511943, 205534846202, 862167483656, 3620429584614, 15217780335870, 64022149180478, 269566679312520, 1135878674712355
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the weigh transform of n-gonal numbers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + (n - 3) x^k)/(k (1 - x^k)^3), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.2950655312028649462400... and c = 0.204576644650802181512... - Vaclav Kotesovec, Aug 19 2018
Showing 1-7 of 7 results.