cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A294102 Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-1)/2).

Original entry on oeis.org

1, 1, 5, 17, 44, 127, 332, 866, 2182, 5412, 13119, 31292, 73516, 170136, 388829, 877653, 1959111, 4327221, 9464856, 20511598, 44067446, 93901142, 198539477, 416696608, 868448305, 1797890682, 3698350956, 7561361750, 15369154555, 31064311255, 62449795986, 124895635385, 248538538858, 492207649241
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the pentagonal numbers (A000326).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(3*n-1)/2, g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 1)/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 33}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000326(k).
a(n) ~ exp(-225*Zeta(3)^3 / (98*Pi^8) - 9 * 5^(5/4) * Zeta(3)^2 / (4 * 7^(5/4) * Pi^5) * n^(1/4) - (3*sqrt(5/7) * Zeta(3) / (2*Pi^2)) * sqrt(n) + (2 * (7/5)^(1/4) * Pi / 3) * n^(3/4)) * 7^(1/8) / (2^(47/24) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294838 Expansion of Product_{k>=1} (1 + x^k)^(k*(3*k-2)).

Original entry on oeis.org

1, 1, 8, 29, 89, 301, 915, 2763, 8040, 22910, 63776, 174174, 467448, 1233836, 3209679, 8234149, 20857621, 52206847, 129227514, 316543962, 767767628, 1844925743, 4394337797, 10379319118, 24320964976, 56557678603, 130571770387, 299357973400, 681777058604, 1542840256421, 3470045577372
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the octagonal numbers (A000567).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(3*n-2), g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k (3 k - 2)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (3 d - 2), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 30}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000567(k).
a(n) ~ exp(-1800*Zeta(3)^3 / (49*Pi^8) - (9 * 2^(3/4) * 5^(5/4) * Zeta(3)^2 / (7^(5/4)*Pi^5)) * n^(1/4) - (3*sqrt(10/7) * Zeta(3) / Pi^2) * sqrt(n) + (2*(14/5)^(1/4) * Pi/3) * n^(3/4)) * 7^(1/8) / (2^(41/24) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-2)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294836 Expansion of Product_{k>=1} (1 + x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, 1, 6, 21, 58, 178, 494, 1365, 3640, 9533, 24401, 61384, 151958, 370335, 890565, 2113913, 4959199, 11505799, 26420628, 60082005, 135386341, 302448477, 670148898, 1473387787, 3215519032, 6968266907, 14999453058, 32079714584, 68187859040, 144083404856, 302727633735, 632579826174
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal numbers (A000384).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(2*n-1), g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k)^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000384(k).
a(n) ~ 7^(1/8) * exp(Pi*2^(3/2) * (7/15)^(1/4) * n^(3/4)/3 - 3*Zeta(3)*sqrt(15*n/7) / (2*Pi^2) - 135*Zeta(3)^2 * (15*n/7)^(1/4) / (28*sqrt(2)*Pi^5) - 2025*Zeta(3)^3 / (196*Pi^8)) / (2^(5/3) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(2*d-1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A294844 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(5*k-2)/6).

Original entry on oeis.org

1, 1, 8, 34, 114, 411, 1380, 4573, 14650, 45995, 141296, 426364, 1265443, 3698011, 10657134, 30312395, 85183177, 236681860, 650686538, 1771098691, 4775571943, 12762628737, 33821018537, 88909273699, 231945942992, 600700301298, 1544897610261, 3946762859175, 10018454809275, 25274880698255
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the heptagonal pyramidal numbers (A002413).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (5 k - 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (5 d - 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002413(k).
a(n) ~ (3*Zeta(5))^(1/10) / (2^(479/720) * 5^(3/10) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (1312200000000000 * Zeta(5)^3) - 49 * Pi^8 * Zeta(3) / (405000000 * Zeta(5)^2) - Zeta(3)^2 / (750*Zeta(5)) + (343*Pi^12 / (60750000000 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (22500 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (5400000 * 2^(1/5) * 3^(2/5) * 5^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * 5^(4/5) * (3*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (900 * 2^(4/5) * 5^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5^(7/5) * (3*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)). - Vaclav Kotesovec, Nov 10 2017

A295122 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(5*k-3)/2).

Original entry on oeis.org

1, -1, -6, -12, 6, 65, 179, 202, -137, -1392, -3492, -5135, -1325, 15437, 52934, 101787, 116827, -16945, -462603, -1350732, -2475989, -2889620, -343236, 8559858, 26972213, 53099230, 72521956, 47535918, -86985043, -409729146, -952305325, -1577038736
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2017

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(5*n-3)/2, g(n) = -1.

Crossrefs

Cf. A294846 (b=3), A284896 (b=4), A295086 (b=5), A295121 (b=6), this sequence (b=7), A295123 (b=8).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(5*k-3)/2)))

Formula

Convolution inverse of A294837.
G.f.: Product_{k>=1} 1/(1 + x^k)^A000566(k).
a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(5*d-3)*(-1)^(n/d).

A294840 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(k*(5*k-3)/2)*(1 + x^(2*k))^(k*(5*k+3)/2).

Original entry on oeis.org

1, 1, 4, 11, 26, 65, 150, 343, 760, 1670, 3574, 7561, 15752, 32396, 65850, 132386, 263447, 519316, 1014744, 1966234, 3780464, 7215020, 13674227, 25744768, 48166429, 89576421, 165638008, 304615115, 557275053, 1014398476, 1837617957, 3313527482, 5948262037, 10632231253, 18926026208
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the generalized heptagonal numbers (A085787).

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[Product[(1 + x^(2 k - 1))^(k (5 k - 3)/2) (1 + x^(2 k))^(k (5 k + 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (5 d (d + 1)/8 + (-1)^d (2 d + 1)/16 - 1/16), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A085787(k).
a(n) ~ 7^(1/8) * exp(Pi*sqrt(2) * 7^(1/4) * n^(3/4) / 3^(5/4) + 15*Zeta(3) * sqrt(3*n/7) / (4*Pi^2) - (7*Pi^6 + 4050*Zeta(3)^2)*n^(1/4) / (112*sqrt(2) * 3^(3/4) * 7^(1/4) * Pi^5) + 15*Zeta(3) * (7*Pi^6 + 5400*Zeta(3)^2) / (3136*Pi^8)) / (2^(7/3) * 3^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017

A318124 a(n) = [x^n] exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^3)).

Original entry on oeis.org

1, 1, 2, 9, 31, 127, 494, 1994, 8040, 32741, 133855, 549775, 2266756, 9372300, 38862245, 161500403, 672538548, 2805669061, 11723319333, 49055511943, 205534846202, 862167483656, 3620429584614, 15217780335870, 64022149180478, 269566679312520, 1135878674712355
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the weigh transform of n-gonal numbers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[(-1)^(k + 1) x^k (1 + (n - 3) x^k)/(k (1 - x^k)^3), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.2950655312028649462400... and c = 0.204576644650802181512... - Vaclav Kotesovec, Aug 19 2018
Showing 1-7 of 7 results.