A134167
Complete list of solutions to y^2 = x^3 + 1025; sequence gives x values.
Original entry on oeis.org
-10, -5, -4, -1, 4, 10, 20, 40, 50, 64, 155, 166, 446, 920, 3631, 3730
Offset: 1
-
{ x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 1025])) ]) }; /* adapted from A029728 */
-
[i[0] for i in EllipticCurve([0, 1025]).integral_points()] # Seiichi Manyama, Aug 26 2019
A124439
Complete list of solutions to y^2 = x^3 + 17; sequence gives x values.
Original entry on oeis.org
-1, -2, 2, 4, 8, 43, 52, 5234
Offset: 1
- L. J. Mordell, Diophantine Equations, Ac. Press, p. 246.
- T. Nagell, Einige Gleichungen von der Form ay^2+by+c=dx^3, Vid. Akad. Skrifter Oslo, Nr. 7 (1930).
A124451
Complete list of solutions to y^2 = x^3 + 17; sequence gives y values.
Original entry on oeis.org
4, 3, 5, 9, 23, 282, 375, 378661
Offset: 1
- L. J. Mordell, Diophantine Equations, Ac. Press, p. 246.
Cf.
A124439 (x values). See
A029728 for further comments and references.
A303615
Complete list of solutions to y^2 + y = x^3 - 525x + 10156; sequence gives x values.
Original entry on oeis.org
-29, -25, -20, -14, -5, 5, 14, 16, 20, 25, 49, 70, 79, 130, 250, 305, 400, 695, 1555, 1645, 18895
Offset: 1
a(6) = 5: 5^3 - 525 * 5 + 10156 = 7656 = 88 * 87.
A309071
Complete list of solutions to y^2 = x^3 + 20*x; sequence gives x values.
Original entry on oeis.org
0^3 + 20* 0 = 0 = 0^2.
4^3 + 20* 4 = 144 = 12^2.
5^3 + 20* 5 = 225 = 15^2.
720^3 + 20*720 = 373262400 = 19320^2.
-
for(k=0, 1e5, if(issquare(k*(k^2+20)), print1(k", ")))
-
[i[0] for i in EllipticCurve([20, 0]).integral_points()] # Seiichi Manyama, Aug 25 2019
A316456
Complete list of solutions to y^2 = x^3 - 7x + 10; sequence gives x values.
Original entry on oeis.org
-3, -2, -1, 1, 2, 3, 5, 9, 13, 31, 41, 67, 302
Offset: 1
Cf.
A029728 (y^2 = x^3 + 17),
A047694 (y^2 = C(x,0) + C(x,1) + C(x,2) + C(x,3))
-
EllipticCurve([0,0,0,-7,10]).integral_points()
A317053
Complete list of solutions to y^2 + y = x^3 - 525x + 10156 with y > 0; sequence gives positive y values.
Original entry on oeis.org
31, 74, 76, 87, 112, 121, 319, 562, 679, 1462, 3937, 5312, 7987, 18312, 61312, 66712, 2597287
Offset: 1
a(1) = 31: (-29)^3 - 525 * (-29) + 10156 = 996 = 31 * 32.
-
EllipticCurve([0, 0, 1, -525, 10156]).integral_points()
Comments