A029728
Complete list of solutions to y^2 = x^3 + 17; sequence gives x values.
Original entry on oeis.org
-2, -1, 2, 4, 8, 43, 52, 5234
Offset: 1
- L. J. Mordell, Diophantine Equations, Ac. Press, p. 246.
- T. Nagell, Einige Gleichungen von der Form ay^2+by+c=dx^3, Vid. Akad. Skrifter Oslo, Nr. 7 (1930).
- Silverman, Joseph H. and John Tate, Rational Points on Elliptic Curves. New York: Springer-Verlag, 1992.
x values of solutions to y^2 = x^3 + a*x + b;
-
Sort([ p[1] : p in IntegralPoints(EllipticCurve([0,17])) ]); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
ok[x_] := Reduce[y>0 && y^2 == x^3 + 17, y, Integers] =!= False; Select[Table[x, {x, -2, 10000}], ok ] (* Jean-François Alcover, Sep 07 2011 *)
-
[i[0] for i in EllipticCurve([0, 17]).integral_points()] # Seiichi Manyama, Aug 25 2019
A134166
Complete list of solutions to y^2 = x^3 + 1025; sequence gives y values.
Original entry on oeis.org
5, 30, 31, 32, 33, 45, 95, 255, 355, 513, 1930, 2139, 9419, 27905, 218796, 227805
Offset: 1
a(1)^2 = 5^2 = 25 = A134167(1)^3 + 1025 = -1000 + 1025.
a(2)^2 = 30^2 = 900 = A134167(2)^3 + 1025 = -125 + 1025.
a(3)^2 = 31^2 = 961 = A134167(3)^3 + 1025 = -64 + 1025.
a(4)^2 = 32^2 = 1024 = A134167(4)^3 + 1025 = -1 + 1025.
a(5)^2 = 33^2 = 1089 = A134167(5)^3 + 1025 = 64 + 1025.
a(6)^2 = 45^2 = 2025 = A134167(6)^3 + 1025 = 1000 + 1025.
a(7)^2 = 95^2 = 9025 = A134167(7)^3 + 1025 = 8000 + 1025.
a(8)^2 = 255^2 = 65025 = A134167(8)^3 + 1025 = 64000 + 1025.
a(9)^2 = 355^2 = 126025 = A134167(9)^3 + 1025 = 125000 + 1025.
a(10)^2 = 513^2 = 263169 = A134167(10)^3 + 1025 = 262144 + 1025.
a(11)^2 = 1930^2 = 3724900 = A134167(11)^3 + 1025 = 3723875 + 1025.
a(12)^2 = 2139^2 = 4575321 = A134167(12)^3 + 1025 = 4574296 + 1025.
a(13)^2 = 9419^2 = 88717561 = A134167(13)^3 + 1025 = 88716536 + 1025.
a(14)^2 = 27905^2 = 778689025 = A134167(14)^3 + 1025 = 778688000 + 1025.
a(15)^2 = 218796^2 = 47871689616 = A134167(15)^3 + 1025 = 47871688591 + 1025.
a(16)^2 = 227805^2 = 51895118025 = A134167(16)^3 + 1025 = 51895117000 + 1025.
-
{ x : x in Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 1025])) ]) }; /* adapted from A029727 */
-
Select[Table[Sqrt[1025+n^3],{n,-10,20000}],IntegerQ] (* Harvey P. Dale, Jan 21 2023 *)
Showing 1-2 of 2 results.
Comments