cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A029727 Complete list of solutions to y^2 = x^3 + 17; sequence gives y values.

Original entry on oeis.org

3, 4, 5, 9, 23, 282, 375, 378661
Offset: 1

Views

Author

Keywords

References

  • L. J. Mordell, Diophantine Equations, Ac. Press, p. 246.

Crossrefs

See A029728 for further comments and references.

Programs

  • Magma
    Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0,17])) ]); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Mathematica
    r[x_] := Reduce[y > 0 && y^2 == x^3 + 17, y, Integers]; y /. ToRules /@ Select[Table[r[x], {x, -2, 10000}], # =!= False & ] (* Jean-François Alcover, Sep 07 2011 *)
  • SageMath
    [i[1] for i in EllipticCurve([0, 17]).integral_points()] # Seiichi Manyama, Aug 25 2019

A134108 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 + n.

Original entry on oeis.org

3, 1, 1, 1, 1, 0, 0, 4, 5, 1, 0, 2, 0, 0, 2, 1, 8, 1, 1, 0, 0, 1, 0, 4, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 3, 0, 0, 0, 0, 0, 2, 3, 4, 0, 0, 2, 0, 0, 1, 1, 6, 0, 0, 1, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 6, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007, Oct 14 2007

Keywords

Comments

a(n) = A081119(n)/2 if A081119(n) is even, (A081119(n)+1)/2 if A081119(n) is odd (i.e. if n is a cubic number).
Comment from T. D. Noe, Oct 12 2007: In sequences A134108 (this entry) and A134109 dealing with the equation y^2 = x^3 + n, one could note that these are Mordell equations. Here are some related sequences: A054504, A081119, A081120, A081121. The link "Integer points on Mordell curves" has data on 20000 values of n. A134108 and A134109 count only solutions with y >= 0 and can be derived from A081119 and A081120.

Examples

			y^2 = x^3 + 1 has solutions (y, x) = (0, -1), (1, 0) and (3, 2), hence a(1) = 3.
y^2 = x^3 + 6 has no solutions, hence a(6) = 0.
y^2 = x^3 + 17 has 8 solutions (see A029727, A029728), hence a(17) = 8.
y^2 = x^3 + 27 has solution (y, x) = (0, -3), hence a(27) = 1.
		

Crossrefs

Programs

A134042 Complete list of solutions to y^2 = x^3 + 113; sequence gives x values.

Original entry on oeis.org

-4, 2, 8, 11, 26, 422
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2007

Keywords

Comments

For corresponding y values and examples see A134043.

Crossrefs

Programs

  • Magma
    Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 113])) ]); /* adapted from A029728 */
    
  • SageMath
    [i[0] for i in EllipticCurve([0, 113]).integral_points()] # Seiichi Manyama, Aug 25 2019

Extensions

Edited and corrected by Klaus Brockhaus, Oct 04 2007

A134105 Complete list of solutions to y^2 = x^3 + 297; sequence gives x values.

Original entry on oeis.org

-6, -2, 3, 4, 12, 34, 48, 1362, 93844
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007

Keywords

Comments

For corresponding y values and examples see A134104.
The parameter -297 of the curve corresponds to A200218(1). a(9)=A200216(1). - Artur Jasinski, Nov 29 2011

Crossrefs

Programs

  • Magma
    Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 297])) ]); /* adapted from A029728 */
    
  • Mathematica
    sol[x_] := Solve[y > 0 && x^3 - y^2 == -297, y, Integers];
    Reap[For[x = 1, x < 10^5, x++, sx = sol[x]; If[sx != {}, xy = {x, y} /. sx[[1]]; Print[xy]; Sow[xy]]; sx = sol[-x]; If[sx != {}, xy = {-x, y} /. sx[[1]]; Print[xy]; Sow[xy]]]][[2, 1]][[All, 1]] // Sort (* Jean-François Alcover, Feb 07 2020 *)
  • SageMath
    [i[0] for i in EllipticCurve([0, 297]).integral_points()] # Seiichi Manyama, Aug 26 2019

A134107 Complete list of solutions to y^2 = x^3 - 207; sequence gives x values.

Original entry on oeis.org

6, 12, 18, 31, 312, 331, 367806
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007

Keywords

Comments

For corresponding y values and examples see A134106.

Crossrefs

Programs

  • Magma
    Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, -207])) ]); /* adapted from A029728 */
    
  • SageMath
    [i[0] for i in EllipticCurve([0, -207]).integral_points()] # Seiichi Manyama, Aug 25 2019

A080761 Positive numbers of the form y^2 - x^3, x and y >= 1.

Original entry on oeis.org

1, 3, 8, 9, 12, 15, 17, 18, 19, 22, 24, 28, 30, 35, 36, 37, 38, 40, 41, 44, 48, 54, 55, 56, 57, 63, 64, 65, 68, 71, 73, 79, 80, 89, 92, 94, 97, 98, 99, 100, 101, 105, 106, 107, 108, 112, 113, 117, 119, 120, 121, 128, 129, 131, 132, 136, 138, 141, 142, 143, 145, 148, 151
Offset: 1

Views

Author

Cino Hilliard, Mar 10 2003

Keywords

Comments

From Artur Jasinski, Oct 03 2007: (Start)
Some numbers have multiple partitions:
8 = 4^2 - 8^3 = 312^2 - 46^3,
9 = 6^2 - 3^3 = 15^2 - 6 ^3 = 253^2 - 40^3. (End)
This is Mordell's equation with the condition that x and y are positive. Sequence A054504 lists the n for which there is no solution to Mordell's equation. Hence, none of those numbers will be in this sequence. The terms of this sequence can be determined by looking at the link to Gebel's data. - T. D. Noe, Mar 23 2011

Examples

			8 is in the sequence since 3^2 = 1^3 + 8.
		

Crossrefs

Complement of A080762.
Cf. sequences for n^3+7, n^3+17, n^3+3, n^3+2, n^3+5.

Programs

  • Mathematica
    With[{nn=100},Take[Union[Select[First[#]^2-Last[#]^3&/@Tuples[Range[ 20nn],2],#>0&]],nn]] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    diop(n,m) = { for(p=1,m, for(x=1,n, y=x*x*x+p; if(issquare(y),print1(p" "); break) ) ) }

Extensions

"Positive" added to definition by N. J. A. Sloane, Oct 06 2007

A134074 Complete list of solutions to y^2 = x^3 + 73; sequence gives x values.

Original entry on oeis.org

-4, 2, 3, 6, 72, 356
Offset: 1

Views

Author

Klaus Brockhaus, Oct 07 2007

Keywords

Comments

For corresponding y values and examples see A134073.

Crossrefs

Programs

  • Magma
    Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 73])) ]); /* adapted from A029728 */
    
  • SageMath
    [i[0] for i in EllipticCurve([0, 73]).integral_points()] # Seiichi Manyama, Aug 25 2019

A134103 Complete list of solutions to y^2 = x^3 + 225; sequence gives x values.

Original entry on oeis.org

-6, -5, 0, 4, 6, 10, 15, 30, 60, 180, 336, 351, 720114
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007

Keywords

Comments

For corresponding y values and examples see A134102.

Crossrefs

Programs

  • Magma
    { x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 225])) ]) }; /* adapted from A029728 */
    
  • SageMath
    [i[0] for i in EllipticCurve([0, 225]).integral_points()] # Seiichi Manyama, Aug 26 2019

A268509 Numbers x such that x^3 = y^2 + z for some y and some nonzero z with -x < z < x.

Original entry on oeis.org

2, 3, 5, 13, 15, 17, 32, 35, 37, 40, 43, 46, 52, 56, 63, 65, 99, 101, 109, 136, 143, 145, 152, 158, 175, 190, 195, 197, 243, 255, 257, 312, 317, 323, 325, 331, 336, 351, 356, 366, 377, 399, 401, 422, 483, 485, 560, 568, 575, 577, 584, 592, 654, 675, 677, 717, 741, 783, 785, 799, 810, 891, 899, 901, 909, 937, 944, 978
Offset: 1

Views

Author

Daniel Mondot, Feb 06 2016

Keywords

Comments

List of x such as x^3 is a near square (see examples).
Note that z = 17 appears often (see A029728).

Examples

			2^3 = 3^2 - 1;
3^3 = 5^2 + 2;
5^3 = 11^2 + 4;
13^3 = 47^2 - 12;
15^3 = 58^2 + 11;
17^3 = 70^2 + 13;
32^3 = 181^2 + 7;
35^3 = 207^2 + 26;
37^3 = 225^2 + 28;
40^3 = 253^2 - 9;
43^3 = 282^2 - 17;
46^3 = 312^2 - 8;
52^3 = 375^2 - 17;
56^3 = 419^2 + 55;
63^3 = 500^2 + 47;
65^3 = 524^2 + 49;
99^3 = 985^2 + 74.
		

Crossrefs

Programs

  • C
    #include 
    #include 
    #include 
    #define MAX2 10000
    /* list number x and y such that x^3 = y^2 ± delta (0 < delta < x) */
    /* this generates A268509 and A268510 */
    long long unsigned b,c,d;
    long long signed ds;
    unsigned long long list2[MAX2];
    unsigned long long list3[MAX2];
    long double b1, cd, dd;
    void main(unsigned argc, char *argv[])
    {
    unsigned a, i;
      i=0;
      // I never actually calculate b^3 or c^2, but only b^(3/2) = c + ds
      // this allows me to indirectly check b^3 past 2^64
      for (b=0; b<100000000; ++b) // could go up to b<4294967295u; max
      {
        b1 = sqrtl(b);
        cd= b1 *(long double)b;
        c=(long long unsigned)(cd+(double)0.5);
        dd = 2 * c * (cd - c);
        if (dd<0) ds = (dd - 0.5);
        else ds = (dd + 0.5);
        d = llabs(ds);
        if (dA268509 */
      for (a=0; aA268510 */
      for (a=0; a
    				
  • PARI
    is(n)=my(t=abs(n^3-round(n^1.5)^2)); 0Charles R Greathouse IV, Feb 09 2016

A268510 Numbers x such that x^2 = y^3 + z (0 < abs(z) < y).

Original entry on oeis.org

3, 5, 11, 47, 58, 70, 181, 207, 225, 253, 282, 312, 375, 419, 500, 524, 985, 1015, 1138, 1586, 1710, 1746, 1874, 1986, 2315, 2619, 2723, 2765, 3788, 4072, 4120, 5511, 5644, 5805, 5859, 6022, 6159, 6576, 6717, 7002, 7320, 7970, 8030, 8669, 10615, 10681, 13252, 13537, 13788, 13860, 14113, 14404, 16725, 17537, 17615
Offset: 1

Views

Author

Daniel Mondot, Feb 06 2016

Keywords

Comments

List of n such as n^2 is a near cube (see examples).
Numbers x such that x^2 = y^3 + 0 (e.g. 1000^2 = 100^3) are omitted.
Note that a delta of 17 appears often. See A029728.

Examples

			3^2 = 2^3 + 1
5^2 = 3^3 - 2
11^2 = 5^3 - 4
47^2 = 13^3 + 12
58^2 = 15^3 - 11
70^2 = 17^3 - 13
181^2 = 32^3 - 7
207^2 = 35^3 - 26
225^2 = 37^3 - 28
253^2 = 40^3 + 9
282^2 = 43^3 + 17
312^2 = 46^3 + 8
375^2 = 52^3 + 17
419^2 = 56^3 - 55
500^2 = 63^3 - 47
524^2 = 65^3 - 49
985^2 = 99^3 - 74
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 5000, Resolve@ Exists[{y, z}, And[Reduce[#^2 == (y^3 + z), {y, z}, Integers], 0 < Abs@ z < y]] &] (* Michael De Vlieger, Feb 07 2016 *)
Showing 1-10 of 17 results. Next