A029728
Complete list of solutions to y^2 = x^3 + 17; sequence gives x values.
Original entry on oeis.org
-2, -1, 2, 4, 8, 43, 52, 5234
Offset: 1
- L. J. Mordell, Diophantine Equations, Ac. Press, p. 246.
- T. Nagell, Einige Gleichungen von der Form ay^2+by+c=dx^3, Vid. Akad. Skrifter Oslo, Nr. 7 (1930).
- Silverman, Joseph H. and John Tate, Rational Points on Elliptic Curves. New York: Springer-Verlag, 1992.
x values of solutions to y^2 = x^3 + a*x + b;
-
Sort([ p[1] : p in IntegralPoints(EllipticCurve([0,17])) ]); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
ok[x_] := Reduce[y>0 && y^2 == x^3 + 17, y, Integers] =!= False; Select[Table[x, {x, -2, 10000}], ok ] (* Jean-François Alcover, Sep 07 2011 *)
-
[i[0] for i in EllipticCurve([0, 17]).integral_points()] # Seiichi Manyama, Aug 25 2019
A134107
Complete list of solutions to y^2 = x^3 - 207; sequence gives x values.
Original entry on oeis.org
6, 12, 18, 31, 312, 331, 367806
Offset: 1
-
Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, -207])) ]); /* adapted from A029728 */
-
[i[0] for i in EllipticCurve([0, -207]).integral_points()] # Seiichi Manyama, Aug 25 2019
A134103
Complete list of solutions to y^2 = x^3 + 225; sequence gives x values.
Original entry on oeis.org
-6, -5, 0, 4, 6, 10, 15, 30, 60, 180, 336, 351, 720114
Offset: 1
-
{ x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 225])) ]) }; /* adapted from A029728 */
-
[i[0] for i in EllipticCurve([0, 225]).integral_points()] # Seiichi Manyama, Aug 26 2019
A134104
Complete list of solutions to y^2 = x^3 + 297; sequence gives y values.
Original entry on oeis.org
9, 17, 18, 19, 45, 199, 333, 50265, 28748141
Offset: 1
a(1)^2 = 9^2 = 81 = A134105(1)^3 + 297 = -216 + 297.
a(2)^2 = 17^2 = 289 = A134105(2)^3 + 297 = -8 + 297.
a(3)^2 = 18^2 = 324 = A134105(3)^3 + 297 = 27 + 297.
a(4)^2 = 19^2 = 361 = A134105(4)^3 + 297 = 64 + 297.
a(5)^2 = 45^2 = 2025 = A134105(5)^3 + 297 = 1728 + 297.
a(6)^2 = 199^2 = 39601 = A134105(6)^3 + 297 = 39304 + 297.
a(7)^2 = 333^2 = 110889 = A134105(7)^3 + 297 = 110592 + 297.
a(8)^2 = 50265^2 = 2526570225 = A134105(8)^3 + 297 = 2526569928 + 297.
a(9)^2 = 28748141^2 = 826455610955881 = A134105(9)^3 + 297 = 826455610955584 + 297.
-
Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 297])) ]); /* adapted from A029727 */
-
sol[x_] := Solve[y > 0 && x^3 - y^2 == -297, y, Integers];
Reap[For[x = 1, x < 10^5, x++, sx = sol[x]; If[sx != {}, xy = {x, y} /. sx[[1]]; Print[xy]; Sow[xy]]; sx = sol[-x]; If[sx != {}, xy = {-x, y} /. sx[[1]]; Print[xy]; Sow[xy]]]][[2, 1]][[All, 2]] // Sort (* Jean-François Alcover, Feb 07 2020 *)
A134167
Complete list of solutions to y^2 = x^3 + 1025; sequence gives x values.
Original entry on oeis.org
-10, -5, -4, -1, 4, 10, 20, 40, 50, 64, 155, 166, 446, 920, 3631, 3730
Offset: 1
-
{ x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 1025])) ]) }; /* adapted from A029728 */
-
[i[0] for i in EllipticCurve([0, 1025]).integral_points()] # Seiichi Manyama, Aug 26 2019
A201268
Distances d=x^3-y^2 for primary extremal points {x,y} of Mordell elliptic curves with quadratic extensions over rationals.
Original entry on oeis.org
52488, 15336, -20088, 219375, -293625, -474552, 1367631, -297, 100872, -105624, 6021000, -6615000, 40608000, -45360000, -423360000, 69641775, -72560097, 110160000, -114912000, -1216512, 1418946687, -1507379625, 1450230912, -1533752064, 2143550952, 4566375
Offset: 1
A200565
Integral x solutions of elliptic curve x^3-y^2 = 54814765 = A200218(2).
Original entry on oeis.org
819, 5256, 838044, 322001299796379844
Offset: 1
Showing 1-7 of 7 results.
Comments