A029728
Complete list of solutions to y^2 = x^3 + 17; sequence gives x values.
Original entry on oeis.org
-2, -1, 2, 4, 8, 43, 52, 5234
Offset: 1
- L. J. Mordell, Diophantine Equations, Ac. Press, p. 246.
- T. Nagell, Einige Gleichungen von der Form ay^2+by+c=dx^3, Vid. Akad. Skrifter Oslo, Nr. 7 (1930).
- Silverman, Joseph H. and John Tate, Rational Points on Elliptic Curves. New York: Springer-Verlag, 1992.
x values of solutions to y^2 = x^3 + a*x + b;
-
Sort([ p[1] : p in IntegralPoints(EllipticCurve([0,17])) ]); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
ok[x_] := Reduce[y>0 && y^2 == x^3 + 17, y, Integers] =!= False; Select[Table[x, {x, -2, 10000}], ok ] (* Jean-François Alcover, Sep 07 2011 *)
-
[i[0] for i in EllipticCurve([0, 17]).integral_points()] # Seiichi Manyama, Aug 25 2019
A134105
Complete list of solutions to y^2 = x^3 + 297; sequence gives x values.
Original entry on oeis.org
-6, -2, 3, 4, 12, 34, 48, 1362, 93844
Offset: 1
-
Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 297])) ]); /* adapted from A029728 */
-
sol[x_] := Solve[y > 0 && x^3 - y^2 == -297, y, Integers];
Reap[For[x = 1, x < 10^5, x++, sx = sol[x]; If[sx != {}, xy = {x, y} /. sx[[1]]; Print[xy]; Sow[xy]]; sx = sol[-x]; If[sx != {}, xy = {-x, y} /. sx[[1]]; Print[xy]; Sow[xy]]]][[2, 1]][[All, 1]] // Sort (* Jean-François Alcover, Feb 07 2020 *)
-
[i[0] for i in EllipticCurve([0, 297]).integral_points()] # Seiichi Manyama, Aug 26 2019
A134107
Complete list of solutions to y^2 = x^3 - 207; sequence gives x values.
Original entry on oeis.org
6, 12, 18, 31, 312, 331, 367806
Offset: 1
-
Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, -207])) ]); /* adapted from A029728 */
-
[i[0] for i in EllipticCurve([0, -207]).integral_points()] # Seiichi Manyama, Aug 25 2019
A134102
Complete list of solutions to y^2 = x^3 + 225; sequence gives y values.
Original entry on oeis.org
3, 10, 15, 17, 21, 35, 60, 165, 465, 2415, 6159, 6576, 611085363
Offset: 1
a(1)^2 = 3^2 = 9 = A134103(1)^3 + 225 = -216 + 225.
a(2)^2 = 10^2 = 100 = A134103(2)^3 + 225 = -125 + 225.
a(3)^2 = 15^2 = 225 = A134103(3)^3 + 225 = 0 + 225.
a(4)^2 = 17^2 = 289 = A134103(4)^3 + 225 = 64 + 225.
a(5)^2 = 21^2 = 441 = A134103(5)^3 + 225 = 216 + 225.
a(6)^2 = 35^2 = 1225 = A134103(6)^3 + 225 = 1000 + 225.
a(7)^2 = 60^2 = 3600 = A134103(7)^3 + 225 = 3375 + 225.
a(8)^2 = 165^2 = 27225 = A134103(8)^3 + 225 = 27000 + 225.
a(9)^2 = 465^2 = 216225 = A134103(9)^3 + 225 = 216000 + 225.
a(10)^2 = 2415^2 = 5832225 = A134103(10)^3 + 225 = 5832000 + 225.
a(11)^2 = 6159^2 = 37933281 = A134103(11)^3 + 225 = 37933056 + 225.
a(12)^2 = 6576^2 = 43243776 = A134103(12)^3 + 225 = 43243551 + 225.
a(13)^2 = 611085363^2 = 373425320872841769 = A134103(13)^3 + 225 = 373425320872841544 + 225.
-
{ x : x in Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 225])) ]) }; /* adapted from A029727 */
-
Select[Table[Sqrt[x^3+225],{x,-6,721000}],IntegerQ] (* Harvey P. Dale, Dec 25 2022 *)
A134167
Complete list of solutions to y^2 = x^3 + 1025; sequence gives x values.
Original entry on oeis.org
-10, -5, -4, -1, 4, 10, 20, 40, 50, 64, 155, 166, 446, 920, 3631, 3730
Offset: 1
-
{ x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve([0, 1025])) ]) }; /* adapted from A029728 */
-
[i[0] for i in EllipticCurve([0, 1025]).integral_points()] # Seiichi Manyama, Aug 26 2019
Showing 1-5 of 5 results.
Comments