cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A029728 Complete list of solutions to y^2 = x^3 + 17; sequence gives x values.

Original entry on oeis.org

-2, -1, 2, 4, 8, 43, 52, 5234
Offset: 1

Views

Author

Keywords

Comments

Comments by Henri Cohen on the proof that the list of solutions is complete: (Start)
This is now completely standard. Cremona's mwrank program tells us that this is an elliptic curve of rank 2 with generators P1=(-2,3) and P2=(4,9).
We now apply the algorithm (essentially due to Tzanakis and de Weger) described in Nigel Smart's book on the algorithmic solution of Diophantine equations: using Sinnou David's bounds on linear forms in elliptic logarithms one finds that if P is an integral point then P=aP1+bP2 for |a| and |b| less than a huge bound B (typically 10^100, sometimes more, I didn't do the computation here), but the main point is that B is completely explicit. One then uses the LLL algorithm: this is crucial.
A first application reduces the bound to 200, say, then a second application to 20 and sometimes a third to 12 (at this point it is not necessary). Then a very small search gives all the possible integer points. (End)

References

  • L. J. Mordell, Diophantine Equations, Ac. Press, p. 246.
  • T. Nagell, Einige Gleichungen von der Form ay^2+by+c=dx^3, Vid. Akad. Skrifter Oslo, Nr. 7 (1930).
  • Silverman, Joseph H. and John Tate, Rational Points on Elliptic Curves. New York: Springer-Verlag, 1992.

Crossrefs

Cf. A029727 (y values).
x values of solutions to y^2 = x^3 + a*x + b;
A134107 (a= 0, b=-207),
A134074 (a= 0, b= 73),
A134042 (a= 0, b= 113),
A134103 (a= 0, b= 225),
A134105 (a= 0, b= 297),
A134167 (a= 0, b=1025),
A316456 (a=-7, b= 10),
A309071 (a=20, b= 0).

Programs

  • Magma
    Sort([ p[1] : p in IntegralPoints(EllipticCurve([0,17])) ]); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Mathematica
    ok[x_] := Reduce[y>0 && y^2 == x^3 + 17, y, Integers] =!= False; Select[Table[x, {x, -2, 10000}], ok ] (* Jean-François Alcover, Sep 07 2011 *)
  • SageMath
    [i[0] for i in EllipticCurve([0, 17]).integral_points()] # Seiichi Manyama, Aug 25 2019

A134108 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 + n.

Original entry on oeis.org

3, 1, 1, 1, 1, 0, 0, 4, 5, 1, 0, 2, 0, 0, 2, 1, 8, 1, 1, 0, 0, 1, 0, 4, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 3, 0, 0, 0, 0, 0, 2, 3, 4, 0, 0, 2, 0, 0, 1, 1, 6, 0, 0, 1, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 6, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007, Oct 14 2007

Keywords

Comments

a(n) = A081119(n)/2 if A081119(n) is even, (A081119(n)+1)/2 if A081119(n) is odd (i.e. if n is a cubic number).
Comment from T. D. Noe, Oct 12 2007: In sequences A134108 (this entry) and A134109 dealing with the equation y^2 = x^3 + n, one could note that these are Mordell equations. Here are some related sequences: A054504, A081119, A081120, A081121. The link "Integer points on Mordell curves" has data on 20000 values of n. A134108 and A134109 count only solutions with y >= 0 and can be derived from A081119 and A081120.

Examples

			y^2 = x^3 + 1 has solutions (y, x) = (0, -1), (1, 0) and (3, 2), hence a(1) = 3.
y^2 = x^3 + 6 has no solutions, hence a(6) = 0.
y^2 = x^3 + 17 has 8 solutions (see A029727, A029728), hence a(17) = 8.
y^2 = x^3 + 27 has solution (y, x) = (0, -3), hence a(27) = 1.
		

Crossrefs

Programs

A134043 Complete list of solutions to y^2 = x^3 + 113; sequence gives y values.

Original entry on oeis.org

7, 11, 25, 38, 133, 8669
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2007

Keywords

Comments

For corresponding x values see A134043.

Examples

			a(1)^2 = 7^2 = 49 = A134042(1)^3 + 113 = -64 + 113.
a(2)^2 = 11^2 = 121 = A134042(2)^3 + 113 = 8 + 113.
a(3)^2 = 25^2 = 625 = A134042(3)^3 + 113 = 512 + 113.
a(4)^2 = 38^2 = 1444 = A134042(4)^3 + 113 = 1331+ 113.
a(5)^2 = 133^2 = 17689 = A134042(5)^3 + 113 = 17576 + 113.
a(6)^2 = 8669^2 = 75151561 = A134042(6)^3 + 113 = 75151448 + 113.
		

Crossrefs

Programs

  • Magma
    Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 113])) ]); /* adapted from A029727 */
  • Mathematica
    (Program does not produce first two terms) a = {}; Do[k = n^2 - (Floor[n^(2/3)])^3; If[(k > 112) && (k < 113), AppendTo[a, n]], {n, 1, 100000}]; a

Extensions

Edited and corrected by Klaus Brockhaus, Oct 04 2007

A080761 Positive numbers of the form y^2 - x^3, x and y >= 1.

Original entry on oeis.org

1, 3, 8, 9, 12, 15, 17, 18, 19, 22, 24, 28, 30, 35, 36, 37, 38, 40, 41, 44, 48, 54, 55, 56, 57, 63, 64, 65, 68, 71, 73, 79, 80, 89, 92, 94, 97, 98, 99, 100, 101, 105, 106, 107, 108, 112, 113, 117, 119, 120, 121, 128, 129, 131, 132, 136, 138, 141, 142, 143, 145, 148, 151
Offset: 1

Views

Author

Cino Hilliard, Mar 10 2003

Keywords

Comments

From Artur Jasinski, Oct 03 2007: (Start)
Some numbers have multiple partitions:
8 = 4^2 - 8^3 = 312^2 - 46^3,
9 = 6^2 - 3^3 = 15^2 - 6 ^3 = 253^2 - 40^3. (End)
This is Mordell's equation with the condition that x and y are positive. Sequence A054504 lists the n for which there is no solution to Mordell's equation. Hence, none of those numbers will be in this sequence. The terms of this sequence can be determined by looking at the link to Gebel's data. - T. D. Noe, Mar 23 2011

Examples

			8 is in the sequence since 3^2 = 1^3 + 8.
		

Crossrefs

Complement of A080762.
Cf. sequences for n^3+7, n^3+17, n^3+3, n^3+2, n^3+5.

Programs

  • Mathematica
    With[{nn=100},Take[Union[Select[First[#]^2-Last[#]^3&/@Tuples[Range[ 20nn],2],#>0&]],nn]] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    diop(n,m) = { for(p=1,m, for(x=1,n, y=x*x*x+p; if(issquare(y),print1(p" "); break) ) ) }

Extensions

"Positive" added to definition by N. J. A. Sloane, Oct 06 2007

A134073 Complete list of solutions to y^2 = x^3 + 73; sequence gives y values.

Original entry on oeis.org

3, 9, 10, 17, 611, 6717
Offset: 1

Views

Author

Klaus Brockhaus, Oct 07 2007

Keywords

Comments

For corresponding x values see A134074.

Examples

			a(1)^2 = 3^2 = 9 = A134074(1)^3 + 73 = -64 + 73.
a(2)^2 = 9^2 = 81 = A134074(2)^3 + 73 = 8 + 73.
a(3)^2 = 10^2 = 100 = A134074(3)^3 + 73 = 27 + 73.
a(4)^2 = 17^2 = 289 = A134074(4)^3 + 73 = 216+ 73.
a(5)^2 = 611^2 = 373321 = A134074(5)^3 + 73 = 373248+ 73.
a(6)^2 = 6717^2 = 45118089 = A134074(6)^3 + 73 = 45118016+ 73.
		

Crossrefs

Programs

  • Magma
    Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 73])) ]); /* adapted from A029727 */

A134106 Complete list of solutions to y^2 = x^3 - 207; sequence gives y values.

Original entry on oeis.org

3, 39, 75, 172, 5511, 6022, 223063347
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007

Keywords

Comments

For corresponding x values see A134107.

Examples

			a(1)^2 = 3^2 = 9 = A134107(1)^3 - 207 = 216 - 207.
a(2)^2 = 39^2 = 1521 = A134107(2)^3 - 207 = 1728 - 207.
a(3)^2 = 75^2 = 5625 = A134107(3)^3 - 207 = 5832 - 207.
a(4)^2 = 172^2 = 29584 = A134107(4)^3 - 207 = 29791 - 207.
a(5)^2 = 5511^2 = 30371121 = A134107(5)^3 - 207 = 30371328 - 207.
a(6)^2 = 6022^2 = 36264484 = A134107(6)^3 - 207 = 36264691 - 207.
a(7)^2 = 223063347^2 = 49757256774842409 = A134107(7)^3 - 207 = 49757256774842616 - 207.
		

Crossrefs

Programs

  • Magma
    Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, -207])) ]); /* adapted from A029727 */
    
  • Sage
    [x[1] for x in EllipticCurve([0,-207]).integral_points()] # Charles R Greathouse IV, Aug 09 2024

A134102 Complete list of solutions to y^2 = x^3 + 225; sequence gives y values.

Original entry on oeis.org

3, 10, 15, 17, 21, 35, 60, 165, 465, 2415, 6159, 6576, 611085363
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007

Keywords

Comments

For corresponding x values see A134103.

Examples

			a(1)^2 = 3^2 = 9 = A134103(1)^3 + 225 = -216 + 225.
a(2)^2 = 10^2 = 100 = A134103(2)^3 + 225 = -125 + 225.
a(3)^2 = 15^2 = 225 = A134103(3)^3 + 225 = 0 + 225.
a(4)^2 = 17^2 = 289 = A134103(4)^3 + 225 = 64 + 225.
a(5)^2 = 21^2 = 441 = A134103(5)^3 + 225 = 216 + 225.
a(6)^2 = 35^2 = 1225 = A134103(6)^3 + 225 = 1000 + 225.
a(7)^2 = 60^2 = 3600 = A134103(7)^3 + 225 = 3375 + 225.
a(8)^2 = 165^2 = 27225 = A134103(8)^3 + 225 = 27000 + 225.
a(9)^2 = 465^2 = 216225 = A134103(9)^3 + 225 = 216000 + 225.
a(10)^2 = 2415^2 = 5832225 = A134103(10)^3 + 225 = 5832000 + 225.
a(11)^2 = 6159^2 = 37933281 = A134103(11)^3 + 225 = 37933056 + 225.
a(12)^2 = 6576^2 = 43243776 = A134103(12)^3 + 225 = 43243551 + 225.
a(13)^2 = 611085363^2 = 373425320872841769 = A134103(13)^3 + 225 = 373425320872841544 + 225.
		

Crossrefs

Programs

  • Magma
    { x : x in Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 225])) ]) }; /* adapted from A029727 */
  • Mathematica
    Select[Table[Sqrt[x^3+225],{x,-6,721000}],IntegerQ] (* Harvey P. Dale, Dec 25 2022 *)

A134104 Complete list of solutions to y^2 = x^3 + 297; sequence gives y values.

Original entry on oeis.org

9, 17, 18, 19, 45, 199, 333, 50265, 28748141
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007

Keywords

Comments

For corresponding x values see A134105.

Examples

			a(1)^2 = 9^2 = 81 = A134105(1)^3 + 297 = -216 + 297.
a(2)^2 = 17^2 = 289 = A134105(2)^3 + 297 = -8 + 297.
a(3)^2 = 18^2 = 324 = A134105(3)^3 + 297 = 27 + 297.
a(4)^2 = 19^2 = 361 = A134105(4)^3 + 297 = 64 + 297.
a(5)^2 = 45^2 = 2025 = A134105(5)^3 + 297 = 1728 + 297.
a(6)^2 = 199^2 = 39601 = A134105(6)^3 + 297 = 39304 + 297.
a(7)^2 = 333^2 = 110889 = A134105(7)^3 + 297 = 110592 + 297.
a(8)^2 = 50265^2 = 2526570225 = A134105(8)^3 + 297 = 2526569928 + 297.
a(9)^2 = 28748141^2 = 826455610955881 = A134105(9)^3 + 297 = 826455610955584 + 297.
		

Crossrefs

Programs

  • Magma
    Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 297])) ]); /* adapted from A029727 */
  • Mathematica
    sol[x_] := Solve[y > 0 && x^3 - y^2 == -297, y, Integers];
    Reap[For[x = 1, x < 10^5, x++, sx = sol[x]; If[sx != {}, xy = {x, y} /. sx[[1]]; Print[xy]; Sow[xy]]; sx = sol[-x]; If[sx != {}, xy = {-x, y} /. sx[[1]]; Print[xy]; Sow[xy]]]][[2, 1]][[All, 2]] // Sort (* Jean-François Alcover, Feb 07 2020 *)

A124451 Complete list of solutions to y^2 = x^3 + 17; sequence gives y values.

Original entry on oeis.org

4, 3, 5, 9, 23, 282, 375, 378661
Offset: 1

Views

Author

Keywords

Comments

The solutions here are listed in the order given by Mordell. See A029728 and A029727 for a better version (with comments and references).

References

  • L. J. Mordell, Diophantine Equations, Ac. Press, p. 246.

Crossrefs

Cf. A124439 (x values). See A029728 for further comments and references.

A134166 Complete list of solutions to y^2 = x^3 + 1025; sequence gives y values.

Original entry on oeis.org

5, 30, 31, 32, 33, 45, 95, 255, 355, 513, 1930, 2139, 9419, 27905, 218796, 227805
Offset: 1

Views

Author

Klaus Brockhaus, Oct 11 2007

Keywords

Comments

For corresponding x values see A134167.

Examples

			a(1)^2 = 5^2 = 25 = A134167(1)^3 + 1025 = -1000 + 1025.
a(2)^2 = 30^2 = 900 = A134167(2)^3 + 1025 = -125 + 1025.
a(3)^2 = 31^2 = 961 = A134167(3)^3 + 1025 = -64 + 1025.
a(4)^2 = 32^2 = 1024 = A134167(4)^3 + 1025 = -1 + 1025.
a(5)^2 = 33^2 = 1089 = A134167(5)^3 + 1025 = 64 + 1025.
a(6)^2 = 45^2 = 2025 = A134167(6)^3 + 1025 = 1000 + 1025.
a(7)^2 = 95^2 = 9025 = A134167(7)^3 + 1025 = 8000 + 1025.
a(8)^2 = 255^2 = 65025 = A134167(8)^3 + 1025 = 64000 + 1025.
a(9)^2 = 355^2 = 126025 = A134167(9)^3 + 1025 = 125000 + 1025.
a(10)^2 = 513^2 = 263169 = A134167(10)^3 + 1025 = 262144 + 1025.
a(11)^2 = 1930^2 = 3724900 = A134167(11)^3 + 1025 = 3723875 + 1025.
a(12)^2 = 2139^2 = 4575321 = A134167(12)^3 + 1025 = 4574296 + 1025.
a(13)^2 = 9419^2 = 88717561 = A134167(13)^3 + 1025 = 88716536 + 1025.
a(14)^2 = 27905^2 = 778689025 = A134167(14)^3 + 1025 = 778688000 + 1025.
a(15)^2 = 218796^2 = 47871689616 = A134167(15)^3 + 1025 = 47871688591 + 1025.
a(16)^2 = 227805^2 = 51895118025 = A134167(16)^3 + 1025 = 51895117000 + 1025.
		

Crossrefs

Programs

  • Magma
    { x : x in Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 1025])) ]) }; /* adapted from A029727 */
  • Mathematica
    Select[Table[Sqrt[1025+n^3],{n,-10,20000}],IntegerQ] (* Harvey P. Dale, Jan 21 2023 *)
Showing 1-10 of 10 results.