cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A176630 Nonpalindromic numbers whose binary representation when reversed is the same as binary representation of the number reversed in decimal.

Original entry on oeis.org

92, 732, 759, 957, 5485, 5845, 71869, 77360, 96817, 319773, 377913, 13162800, 39781062, 79497594, 94729789, 98792749, 144579540, 1231493321, 1233941321, 7075293947, 7493925707, 32817543720, 71461803829, 92830816417, 169709554740, 1432254694771, 1774964522341
Offset: 1

Views

Author

Gil Broussard, Apr 22 2010

Keywords

Comments

The binary representation of a decimal number, when reversed, is also the reverse of the decimal number.

Examples

			92 = 1011100 mirrors 0011101 = 29.
732 = 1011011100 mirrors 0011101101 = 237.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And[! PalindromeQ@ #, Drop[#, LengthWhile[#, # == 0 &]] &@ Reverse@ IntegerDigits[#, 2] === IntegerDigits[IntegerReverse[#], 2]] &] (* Michael De Vlieger, Dec 29 2020 *)
  • PARI
    is(k)={my(t=fromdigits(Vecrev(digits(k,10)),10)); t<>k && t == fromdigits(Vecrev(digits(k,2)),2)} \\ Andrew Howroyd, Jan 14 2020
    
  • Python
    def agen():
      k = 0
      while True:
        strk = str(k)
        revstrk = strk[::-1]
        if revstrk != strk:
          if int(revstrk) == int((bin(k)[2:])[::-1], 2):
            yield k
        k += 1
    g = agen()
    print([next(g) for i in range(11)]) # Michael S. Branicky, Dec 29 2020

Formula

Intersection of A029742 and A081434. - Andrew Howroyd, Jan 14 2020

Extensions

Name clarified and a(12)-a(17) from Andrew Howroyd, Jan 14 2020
a(18)-a(24) from Michael S. Branicky, Dec 29 2020
a(25)-a(27) from Jinyuan Wang, Apr 07 2025

A287092 Strobogrammatic nonpalindromic numbers.

Original entry on oeis.org

69, 96, 609, 619, 689, 906, 916, 986, 1691, 1961, 6009, 6119, 6699, 6889, 6969, 8698, 8968, 9006, 9116, 9696, 9886, 9966, 16091, 16191, 16891, 19061, 19161, 19861, 60009, 60109, 60809, 61019, 61119, 61819, 66099, 66199, 66899, 68089, 68189, 68889, 69069, 69169, 69869, 86098, 86198, 86898, 89068, 89168
Offset: 1

Views

Author

Ilya Gutkovskiy, May 19 2017

Keywords

Comments

Nonpalindromic numbers which are invariant under a 180-degree rotation.
Numbers that are the same upside down and containing digits 6, 9.
Intersection of A000787 and A029742.
Union of this sequence and A006072 gives A000787.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{s = {0, 1, 6, 8, 9}, id = IntegerDigits[n]}, If[ Union[ Join[s, id]] == s && (id /. {6 -> 9, 9 -> 6}) == Reverse[id], True, False]]; Select[ Range[0, 89168], fQ[ # ] && ! PalindromeQ[ # ] &]

A324041 Nonpalindromic integers with palindromic product of divisors.

Original entry on oeis.org

26, 49, 2285, 1109111, 3069307, 12028229, 12866669, 110091011, 10207355549, 11010911011, 11100910111, 13579355059, 30101273647, 30693069307, 111283619361
Offset: 1

Views

Author

Michel Marcus, Sep 02 2019

Keywords

Comments

Many terms of A327325 are palindromes, hence this sequence.
Intersection of A029742 and A327325.
a(16) > 3.5*10^11. - Giovanni Resta, Sep 04 2019

Examples

			Divisors of 26 are : 1,2,13,26 and 1*2*13*26=676.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3200000], !PalindromeQ[#] && PalindromeQ[#^(DivisorSigma[0, #]/2)] &] (* Amiram Eldar, Sep 02 2019 *)
  • PARI
    ispal(n) = my(d=digits(n)); d == Vecrev(d);
    isok(n) = !ispal(n) && ispal(vecprod(divisors(n)));

Extensions

a(8)-a(15) from Giovanni Resta, Sep 04 2019
Previous Showing 31-33 of 33 results.