cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A210456 Period of the sequence of the digital roots of Fibonacci n-step numbers.

Original entry on oeis.org

1, 24, 39, 78, 312, 2184, 1092, 240, 273, 26232, 11553, 9840, 177144, 14348904, 21523359, 10315734, 48417720, 16120104, 15706236, 5036466318, 258149112, 1162261464, 141214768239, 421900912158, 8857200, 2184, 2271, 28578504864, 21938847432216, 148698308091840
Offset: 1

Views

Author

Keywords

Comments

More precisely, start with 0,0,...,0,1 (with n-1 0's and a single 1); thereafter the next term is the digital root (A010888) of the sum of the previous n terms. This is a periodic sequence and a(n) is the length of the period.
Theorem: a(n) <= 9^n.
Conjecture: All entries >1 are divisible by 3.
Additional terms are a(242)=177144, a(243)=177879.
More: a(728)=1594320, a(729)=1596513, a(2186)=14348904, a(2187)=14355471, a(6560)=129140160, a(6561)=129159849, a(19682)=1162261464, a(19683)=1162320519. - Hans Havermann, Jan 30 2013, Feb 08 2013
The modulus-9 Pisano periods of Fibonacci numbers, k-th order sequences. - Hans Havermann, Feb 10 2013
Conjecture: a(3^n-1)=3^(2*n+1)-3, a(3^n)=3^(2*n+1)+3^(n+1)+3 - Fred W. Helenius (fredh(AT)ix.netcom.com), posting to MathFun, Feb 21 2013

Examples

			Digital roots of Fibonacci numbers (A030132) are 0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, 2, 3,... Thus the period is 24 (1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9).
		

Crossrefs

Cf. Fibonacci numbers, k-th order sequences, A000045 (Fibonacci numbers, k=2), A030132 (digital root, k=2), A001175 (Pisano periods, k=2), A000073 (tribonacci numbers, k=3), A222407 (digital roots, k=3), A046738 (Pisano periods, k=3), A029898 (Pitoun's sequence), A187772, A220555.
Cf. also A010888.

Programs

  • Maple
    A210456:=proc(q,i)
    local d,k,n,v;
    v:=array(1..q);
    for d from 1 to i do
      for n from 1 to d do v[n]:=0; od; v[d+1]:=1;
      for n from d+2 to q do v[n]:=1+((add(v[k],k=n-d-1..n-1)-1) mod 9);
        if add(v[k],k=n-d+1..n)=9*d and v[n-d]=1 then print(n-d); break;
    fi; od; od; end:
    A210456 (100000000,100);
  • Mathematica
    f[n_] := f[n] = Block[{s = PadLeft[{1}, n], c = 1}, s = t = Nest[g, s, n]; While[t = g[t]; s != t, c++]; c]; g[lst_List] := Rest@Append[lst, 1 + Mod[-1 + Plus @@ lst, 9]]; Do[ Print[{n, f[n] // Timing}], {n, 100}]

Extensions

a(23) from Hans Havermann, Jan 30 2013
a(24) from Hans Havermann, Feb 18 2013
a(28) from Robert G. Wilson v, Feb 21 2013
a(29)-a(30) from Hiroaki Yamanouchi, May 04 2015

A086355 Fixed point if [nonzero-digit product]-function at initial-value=prime(n) is iterated.

Original entry on oeis.org

2, 3, 5, 7, 1, 3, 7, 9, 6, 8, 3, 2, 4, 2, 6, 5, 2, 6, 8, 7, 2, 8, 8, 4, 8, 1, 3, 7, 9, 3, 4, 3, 2, 4, 8, 5, 5, 8, 8, 2, 8, 8, 9, 4, 8, 8, 2, 2, 6, 8, 8, 2, 8, 1, 7, 8, 8, 4, 4, 6, 6, 2, 2, 3, 9, 2, 9, 8, 6, 8, 2, 5, 2, 8, 4, 4, 2, 4, 4, 8, 8, 8, 2, 8, 8, 6, 6, 4, 8, 4, 6, 2, 6, 8, 8, 5, 2, 1, 3, 2, 4, 5, 9, 4, 5
Offset: 1

Views

Author

Labos Elemer, Jul 21 2003

Keywords

Examples

			n=100, prime(100)=541, iteration list={541,20,2}, a(100)=2.
		

Crossrefs

Programs

  • Mathematica
    prd[x_] := Apply[Times, DeleteCases[IntegerDigits[x], 0]]; Table[FixedPoint[prd, Prime[w]], {w, 1, 128}]

Formula

a(n) = A051802(A000040(n)) = fixed-point of A051801(n-th prime).

A133390 Period 18: repeat 1, 4, 7, 2, 2, 5, 4, 1, 1, 8, 5, 2, 7, 7, 4, 5, 8, 8.

Original entry on oeis.org

1, 4, 7, 2, 2, 5, 4, 1, 1, 8, 5, 2, 7, 7, 4, 5, 8, 8, 1, 4, 7, 2, 2, 5, 4, 1, 1, 8, 5, 2, 7, 7, 4, 5, 8, 8, 1, 4, 7, 2, 2, 5, 4, 1, 1, 8, 5, 2, 7, 7, 4, 5, 8, 8, 1, 4, 7, 2, 2, 5, 4, 1, 1, 8, 5, 2, 7, 7, 4, 5, 8, 8, 1, 4, 7, 2, 2, 5, 4, 1, 1, 8, 5, 2, 7, 7, 4, 5, 8, 8
Offset: 0

Views

Author

Paul Curtz, Nov 23 2007

Keywords

Comments

Disordered, three times 1, 2, 4, 5, 7, 8.

Programs

  • Mathematica
    PadRight[{},18*5,{1,4,7,2,2,5,4,1,1,8,5,2,7,7,4,5,8,8}] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    for(i=1,9,print1("1, 4, 7, 2, 2, 5, 4, 1, 1, 8, 5, 2, 7, 7, 4, 5, 8, 8, ")) \\ Charles R Greathouse IV, Jun 02 2011

Formula

Sum of digits mod 9 of 1, 4, 7, 11, 20, A130625. Digits of 1/7, A020806 or A029898, 1, 1, 2, 4, 8.

A154529 A090040 mod 9.

Original entry on oeis.org

1, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8
Offset: 0

Views

Author

Paul Curtz, Jan 11 2009

Keywords

Comments

For n>2, equal to 2^(n-2) mod 9 [From Michael B. Porter, Feb 02 2010]
Apart from leading terms the same as A146501, A153130 and A029898. [From R. J. Mathar, Apr 13 2010]

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1,0,-1,1},{5,1,2,4},101]] (* Ray Chandler, Jul 15 2015 *)

Formula

a(n)=a(n-1)-a(n-3)+a(n-4), n>4. G.f.: (6*x^4+2*x^3+4*x+1-4*x^2)/((1-x)*(1+x)*(x^2-x+1)). [From R. J. Mathar, Feb 25 2009]

Extensions

Edited by N. J. A. Sloane, Jan 12 2009
Extended by Ray Chandler, Jul 15 2015

A227430 Expansion of x^2*(1-x)^3/((1-2*x)*(1-x+x^2)*(1-3*x+3x^2)).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 29, 45, 90, 220, 561, 1365, 3095, 6555, 13110, 25126, 46971, 87381, 164921, 320001, 640002, 1309528, 2707629, 5592405, 11450531, 23166783, 46333566, 91869970, 181348455, 357913941, 708653429, 1410132405, 2820264810, 5662052980
Offset: 0

Views

Author

Paul Curtz, Jul 11 2013

Keywords

Comments

Consider the binomial transform of 0, 0, 0, 0, 0, 1 (period 6) with its differences:
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n): after 0, it is A192080.
0, 0, 0, 0, 1, 5, 15, 35, 70, 126,... e(n)
0, 0, 0, 1, 4, 10, 20, 35, 56, 85,... f(n)
0, 0, 1, 3, 6, 10, 15, 21, 29, 45,... a(n)
0, 1, 2, 3, 4, 5, 6, 8, 16, 45,... b(n)
1, 1, 1, 1, 1, 1, 2, 8, 29, 85,... c(n)
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n).
a(n) + d(n) = A024495(n),
b(n) + e(n) = A131708(n),
c(n) + f(n) = A024493(n).
a(n) - d(n) = 0, 0, 1, 3, 6, 9, 9, 0,... A057083(n-2)
b(n) - e(n) = 0, 1, 2, 3, 3, 0, -9, -27,... A057682(n)
c(n) - f(n) = 1, 1, 1, 0, -3, -9, -18, -27,... A057681(n)
d(n) - a(n) = 0, 0, -1, -3, -6, -9, -9, 0,... -A057083(n-2)
e(n) - b(n) = 0, -1, -2, -3, -3, 0, 9, 27,... -A057682(n)
f(n) - c(n) = -1, -1, -1, 0, 3, 9, 18, 27,... -A057681(n).
The first column is A131531(n).
The first two trisections are multiples of 3. Is the third (1, 10, 29,...) mod 9 A029898(n)?

Examples

			a(6)=6*10-15*6+20*3-15*1+6*0=15, a(7)=90-150+120-45+6=21.
		

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,10},40]] (* Harvey P. Dale, Dec 17 2014 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n, 6*k+2))} \\ Seiichi Manyama, Mar 23 2019

Formula

a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) for n>5, a(0)=a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10.
a(n) = A024495(n) - A192080(n-5) for n>4.
G.f.: -(x^5 - 3*x^4 + 3*x^3 - x^2)/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)). - Ralf Stephan, Jul 13 2013
a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k+2). - Seiichi Manyama, Mar 23 2019

Extensions

Definition uses the g.f. of Ralf Stephan.
More terms from Harvey P. Dale, Dec 17 2014

A086356 Fixed point if [nonzero-digit product]-function at initial-value=C[2n,n]=central binomial coefficient is iterated.

Original entry on oeis.org

2, 6, 2, 7, 2, 4, 4, 2, 2, 6, 6, 6, 8, 6, 5, 8, 8, 4, 8, 2, 9, 8, 6, 8, 6, 2, 8, 8, 2, 8, 6, 2, 6, 6, 8, 2, 6, 6, 6, 8, 9, 2, 2, 8, 2, 8, 2, 8, 6, 4, 2, 2, 8, 8, 2, 8, 6, 8, 2, 8, 6, 8, 9, 6, 6, 2, 6, 2, 2, 2, 8, 6, 8, 6, 8, 2, 8, 8, 8, 8, 8, 8, 6, 2, 6, 2, 8, 6, 8, 8, 8, 8, 8, 6, 8, 8, 6, 8, 2, 8, 2, 8, 6, 8, 8
Offset: 1

Views

Author

Labos Elemer, Jul 21 2003

Keywords

Examples

			n=10, C[20,10]=184756, iteration list={184756,7560,210,2},
a(100)=2.
		

Crossrefs

Programs

  • Mathematica
    prd[x_] := Apply[Times, DeleteCases[IntegerDigits[x], 0]] Table[FixedPoint[prd, Binomial[2*n, n]], {w, 1, 128}]

Formula

a(n)=A051802[A000984(n)]=fixed-point of A051801[C(2n, n)]

A086357 Fixed point if [nonzero-digit-product]-function at initial-value=A002110(n)=n-th primorial is iterated.

Original entry on oeis.org

2, 6, 3, 2, 6, 9, 1, 6, 8, 2, 8, 8, 8, 8, 6, 8, 6, 7, 8, 2, 8, 8, 8, 6, 2, 8, 1, 6, 8, 2, 2, 2, 8, 6, 8, 8, 8, 6, 4, 6, 2, 8, 2, 6, 6, 2, 2, 2, 6, 6, 8, 6, 2, 8, 8, 8, 5, 8, 6, 8, 2, 8, 8, 1, 2, 2, 8, 6, 8, 2, 2, 8, 2, 8, 8, 2, 2, 8, 8, 9, 6, 8, 4, 6, 8, 8, 8, 2, 8, 6, 8, 1, 6, 2, 2, 8, 1, 6, 6, 8, 6, 9, 2, 6, 2
Offset: 1

Views

Author

Labos Elemer, Jul 21 2003

Keywords

Examples

			n=7, 7th-primorial=510510, iteration list={510510,25,10,1},
a(100)=2.
		

Crossrefs

Programs

  • Mathematica
    prd[x_] := Apply[Times, DeleteCases[IntegerDigits[x], 0]] q[x_] := Apply[Times, Table[Prime[w], {w, 1, x}]] Table[FixedPoint[prd, q[w]], {w, 1, 128}]

Formula

a(n)=A051802[A002110(n)]=fixed-point of A051801[A002110(n)]

A086359 Fixed point if [decimal-digit-sum]-function at initial-value=A000984(n)=C[2n,n] is iterated.

Original entry on oeis.org

2, 6, 2, 7, 9, 6, 3, 9, 2, 4, 3, 7, 2, 9, 9, 9, 9, 6, 3, 9, 3, 6, 9, 9, 9, 9, 2, 4, 3, 4, 5, 9, 3, 6, 9, 7, 5, 6, 2, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 3, 9, 3, 6, 9, 9, 9, 9, 3, 6, 9, 6, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 2, 4, 3, 4, 5, 9, 3, 6, 9, 4, 8, 6, 5, 4, 9, 9, 9, 9, 3, 6, 9, 6, 3, 9, 9
Offset: 1

Views

Author

Labos Elemer, Jul 21 2003

Keywords

Examples

			n=10, C[20,10]=184756, iteration list={184756,31,4},a(10)=4.
		

Crossrefs

Programs

  • Mathematica
    sud[x_] := Apply[Plus, DeleteCases[IntegerDigits[x], 0]] Table[FixedPoint[sud, Binomial[2*w, w]], {w, 1, 128}]

Formula

a(n)=A010888[C[2n, n]]=fixed-point of A007953[C[2n, n]]; It equals C[2n, n] modulo(9); at r=0 use 9.
Previous Showing 11-18 of 18 results.