cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A143258 Triangle read by rows, A054525 * A143257, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 6, 2, 2, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 02 2008

Keywords

Comments

Left border = phi(n), A000010.
Row sums = A029935: (1, 2, 4, 5, 8, 8, 12, 12,...)

Examples

			First few rows of the triangle =
1;
1, 1;
2, 1, 1;
2, 1, 1, 1;
4, 1, 1, 1, 1;
2, 2, 1, 1, 1, 1;
6, 1, 1, 1, 1, 1, 1;
...
		

Crossrefs

Formula

Mobius transform of triangle A143257

A328641 Dirichlet g.f.: zeta(s)^2 / zeta(s-1)^2.

Original entry on oeis.org

1, -2, -4, -1, -8, 8, -12, 0, 0, 16, -20, 4, -24, 24, 32, 1, -32, 0, -36, 8, 48, 40, -44, 0, 8, 48, 4, 12, -56, -64, -60, 2, 80, 64, 96, 0, -72, 72, 96, 0, -80, -96, -84, 20, 0, 88, -92, -4, 24, -16, 128, 24, -104, -8, 160, 0, 144, 112, -116, -32, -120, 120, 0, 3, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A029935.
Dirichlet convolution of A023900 with itself.
Inverse Moebius transform of A101035.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[EulerPhi[j], EulerPhi[j], j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := If[e == 1, 2*(1 - p), (p - 1)*(e*p - p - e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv(n, d, eulerphi(d) * eulerphi(n/d))))} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA029935(n/d) * a(d).
a(n) = Sum_{d|n} A101035(d).
Multiplicative with a(p) = 2*(1-p), and a(p^e) = (p-1)*(e*p-p-e-1) for e > 1. - Amiram Eldar, Dec 03 2022

A338165 Dirichlet g.f.: (zeta(s-3) / zeta(s))^2.

Original entry on oeis.org

1, 14, 52, 161, 248, 728, 684, 1680, 2080, 3472, 2660, 8372, 4392, 9576, 12896, 16576, 9824, 29120, 13716, 39928, 35568, 37240, 24332, 87360, 46376, 61488, 74412, 110124, 48776, 180544, 59580, 157696, 138320, 137536, 169632, 334880, 101304, 192024, 228384, 416640
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 14 2020

Keywords

Comments

Dirichlet convolution of Jordan function J_3 (A059376) with itself.

Crossrefs

Programs

  • Mathematica
    Jordan3[n_] := Sum[d^3 MoebiusMu[n/d], {d, Divisors[n]}]; a[n_] := Sum[Jordan3[d] Jordan3[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 40}]
    a[1] = 1; f[p_, e_] := p^(3 e - 6) (p^6 + e (p^3 - 1)^2 - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 40}]

Formula

Multiplicative with a(p^e) = p^(3*e - 6) * (p^6 + e * (p^3 - 1)^2 - 1).
a(n) = Sum_{d|n} J_3(d) * J_3(n/d).
a(n) = Sum_{d|n} d^3 * tau(d) * A007427(n/d), where tau = A000005.
(1/tau(n)) * Sum_{d|n} a(d) * tau(n/d) = n^3.
Sum_{k=1..n} a(k) ~ 2025 * n^4 * ((log(n) + 2*gamma - 1/4)/Pi^8 - 180*zeta'(4) / Pi^12), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 14 2020

A349692 Dirichlet convolution of the gcd-sum function (A018804) with itself.

Original entry on oeis.org

1, 6, 10, 25, 18, 60, 26, 88, 67, 108, 42, 250, 50, 156, 180, 280, 66, 402, 74, 450, 260, 252, 90, 880, 211, 300, 372, 650, 114, 1080, 122, 832, 420, 396, 468, 1675, 146, 444, 500, 1584, 162, 1560, 170, 1050, 1206, 540, 186, 2800, 435, 1266, 660, 1250, 210, 2232, 756
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    A018804[n_] := Sum[GCD[n,k], {k, 1, n}]; a[n_] := Sum[A018804[d] A018804[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    f[p_, e_] := (e + 1)*p^(e - 2)*((e + 2)*(e + 3)*p^2 - 2*e*(e + 2)*p + e*(e - 1))/6; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 55] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A029935(n) = sumdiv(n, d, eulerphi(d)*eulerphi(n/d)); \\ From A029935.
    A349692(n) = sumdiv(n, d, A029935(n/d)*d*numdiv(d)); \\ Antti Karttunen, Nov 25 2021

Formula

Dirichlet g.f.: zeta(s-1)^4 / zeta(s)^2.
a(n) = Sum_{d|n} A018804(d) * A018804(n/d).
a(n) = Sum_{d|n} A029935(d) * A038040(n/d).
a(n) = Sum_{d|n} A344683(d) * A000203(n/d).
Multiplicative with a(p^e) = (e+1) * p^(e-2) * ((e+2)*(e+3)*p^2 - 2*e*(e+2)*p + e*(e-1))/6. - Amiram Eldar, Nov 25 2021

A349741 a(n) = Product_{k=1..n-1} phi(gcd(n,k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 1, 32, 1, 6, 256, 16, 1, 96, 1, 1024, 2304, 10, 1, 16384, 256, 12, 2304, 13824, 1, 524288, 1, 2048, 102400, 16, 5308416, 14155776, 1, 18, 589824, 134217728, 1, 63700992, 1, 1024000, 86973087744, 22, 1, 8589934592, 46656, 1310720
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2021

Keywords

Crossrefs

Cf. A000010, A001088, A029935, A029940, A046022 (positions of 1's), A051190.

Programs

  • Mathematica
    Table[Product[EulerPhi[GCD[n, k]], {k, 1, n - 1}], {n, 1, 50}]
  • PARI
    a(n) = prod(k=1, n-1, eulerphi(gcd(n, k))); \\ Michel Marcus, Nov 28 2021

Formula

a(n) = Product_{d|n, d < n} phi(d)^phi(n/d).

A331376 Dirichlet convolution of the reduced totient function with itself.

Original entry on oeis.org

1, 2, 4, 5, 8, 8, 12, 8, 16, 16, 20, 16, 24, 24, 24, 16, 32, 32, 36, 32, 36, 40, 44, 24, 56, 48, 60, 48, 56, 48, 60, 32, 60, 64, 72, 60, 72, 72, 72, 48, 80, 72, 84, 80, 88, 88, 92, 44, 120, 112, 96, 96, 104, 120, 120
Offset: 1

Views

Author

Torlach Rush, Jan 14 2020

Keywords

Comments

Differs from A029935 when A002322 differs from A000010.

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, lcm(znstar(d)[2]) * lcm(znstar(n/d)[2]));

Formula

a(n) = Sum{d|n} A002322(d) * A002322(n/d).
Previous Showing 31-36 of 36 results.