cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A342534 a(n) = Sum_{k=1..n} phi(gcd(k, n))^2.

Original entry on oeis.org

1, 2, 6, 7, 20, 12, 42, 26, 50, 40, 110, 42, 156, 84, 120, 100, 272, 100, 342, 140, 252, 220, 506, 156, 484, 312, 438, 294, 812, 240, 930, 392, 660, 544, 840, 350, 1332, 684, 936, 520, 1640, 504, 1806, 770, 1000, 1012, 2162, 600, 2022, 968, 1632, 1092, 2756, 876, 2200, 1092, 2052
Offset: 1

Views

Author

Seiichi Manyama, Mar 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^2 &]; Array[a, 50] (* Amiram Eldar, Mar 15 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(gcd(k, n))^2);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^2);

Formula

a(n) = Sum_{d|n} phi(n/d) * phi(d)^2.
a(n) = Sum_{k=1..n} phi(gcd(k,n))*phi(n/gcd(k,n)). - Richard L. Ollerton, May 10 2021
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = (p-1)*(p^(e-2) - p^(2*e-3) + p^(2*e-1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)/(3*zeta(3)) * Product_{p prime} (1 - (2*p-1)/p^3) = A306633 * A065464 / 3 = 0.195343... . (End)

A127477 Triangle T(n,k) read by rows: matrix product A054522 * A054523.

Original entry on oeis.org

1, 2, 1, 5, 0, 2, 6, 3, 0, 2, 17, 0, 0, 0, 4, 10, 5, 4, 0, 0, 2, 37, 0, 0, 0, 0, 0, 6, 22, 11, 0, 6, 0, 0, 0, 4, 41, 0, 14, 0, 0, 0, 0, 0, 6, 34, 17, 0, 0, 8, 0, 0, 0, 0, 4, 101, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 30, 15, 12, 10, 0, 6, 0, 0, 0, 0, 0, 4, 145, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 74, 37, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

If the two matrices A054522 and A054523 are commuted, the matrix product becomes A127478.

Examples

			First few rows of the triangle are:
1;
2, 1;
5, 0, 2;
6, 3, 0, 2;
17, 0, 0, 0, 4;
10, 5, 4, 0, 0, 2;
37, 0, 0, 0, 0, 0, 6;
22, 11, 0, 6, 0, 0, 0, 4;
		

Crossrefs

Programs

  • Maple
    A054522 := proc(n,k) if k = 1 then 1; elif n mod k = 0 then numtheory[phi](k) ; else 0 ; fi; end:
    A054523 := proc(n,k) if k = n then 1; elif n mod k = 0 then numtheory[phi](n/k) ; else 0 ; fi; end:
    A127477 := proc(n,k) add( A054522(n,j)*A054523(j,k), j=k..n) ; end: seq(seq( A127477(n,k),k=1..n),n=1..15) ;

Formula

T(n,k) = sum_{j=k..n} A054522(n,j) * A054523(j,k).
sum_{k=1..n} T(n,k) = A057660(n) (row sums).
T(n,n) = A000010(n) (diagonal).
T(n,1) = A029939(n).

Extensions

Converted comments to formulas, extended - R. J. Mathar, Sep 11 2009

A332686 a(n) = Sum_{k=1..n} phi(k/gcd(n, k)).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 13, 18, 21, 23, 33, 33, 47, 49, 51, 67, 81, 76, 103, 97, 103, 119, 151, 135, 163, 173, 185, 189, 243, 185, 279, 280, 265, 299, 291, 291, 397, 379, 369, 371, 491, 381, 543, 491, 455, 553, 651, 539, 653, 610, 643, 683, 831, 689, 743, 753, 801, 887, 1029
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2020

Keywords

Comments

Inverse Moebius transform of A053570.

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[k/GCD[n, k]], {k, 1, n}], {n, 1, 59}]
  • PARI
    a(n) = sum(k=1, n, eulerphi(k/gcd(n, k))); \\ Michel Marcus, Feb 21 2020

Formula

a(n) = Sum_{k=1..n} phi(lcm(n, k)/n).
a(n) = Sum_{d|n} A053570(d).

A127479 Triangle read by rows: A054522 * A054521 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 0, 2, 0, 5, 4, 4, 4, 0, 6, 2, 0, 0, 2, 0, 7, 6, 6, 6, 6, 6, 0, 8, 0, 6, 0, 4, 0, 4, 0, 9, 8, 0, 6, 6, 0, 6, 6, 0, 10, 4, 8, 4, 0, 0, 4, 0, 4, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 15 2007

Keywords

Comments

Row sums = A029939: (1, 2, 5, 6, 17, 10, 37, ...).

Examples

			First few rows of the triangle:
  1;
  2, 0;
  3, 2, 0;
  4, 0, 2, 0;
  5, 4, 4, 4, 0;
  6, 2, 0, 0, 2, 0;
  7, 6, 6, 6, 6, 6, 0;
  8, 0, 6, 0, 4, 0, 4, 0;
  ...
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Aug 10 2019
Previous Showing 11-14 of 14 results.