cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A099727 Concatenations of six consecutive primes forming a prime.

Original entry on oeis.org

113127131137139149, 569571577587593599, 727733739743751757, 733739743751757761, 739743751757761769, 102110311033103910491051, 105110611063106910871091, 110911171123112911511153, 118111871193120112131217, 138113991409142314271429
Offset: 1

Views

Author

Ray G. Opao, Nov 07 2004

Keywords

Examples

			The prime 113127131137139149 is a concatenation of the consecutive primes 113, 127, 131, 137, 139 and 149.
		

Crossrefs

Programs

  • Maple
    select(isprime, [seq(parse(cat([seq(ithprime(i), i=n+0..n+5)][])), n=1..500)])[]; # K. D. Bajpai, Mar 24 2014
  • Mathematica
    Select[FromDigits[Flatten[IntegerDigits/@#]]&/@Partition[Prime[Range[ 300]],6,1],PrimeQ] (* Harvey P. Dale, Apr 30 2020 *)

A174034 The smallest prime p such that the double-concatenation prime(n) // prime(n+1) // p is a prime number.

Original entry on oeis.org

3, 3, 7, 19, 17, 7, 17, 7, 3, 23, 11, 11, 11, 17, 3, 3, 7, 3, 11, 17, 29, 19, 13, 7, 37, 7, 23, 37, 7, 23, 7, 7, 7, 11, 7, 53, 29, 31, 31, 13, 11, 17, 7, 11, 11, 29, 23, 47, 7, 7, 7, 13, 11, 19, 67, 19, 13, 101, 59, 13, 13, 31, 17, 23, 7, 13, 29, 73, 29, 7
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 06 2010

Keywords

Comments

It is conjectured that a(n) = 3 for infinitely many n.

Examples

			n=1: 2 // 3 // 3 = 233, which is prime, so a(1) = 3.
n=2: 3 // 5 // 2 = 352, which is not prime, but 3 // 5 // 3 = 353 is, so a(2) = 3.
		

Crossrefs

Programs

  • PARI
    A174034(n)={ n=eval(Str(prime(n),prime(n+1))); for( d=1,99, n*=10; forprime( p=10^(d-1),10^d, isprime(n+p) & return(p)))} \\ M. F. Hasler, Dec 01 2010
  • Sage
    concat = lambda xx: Integer(''.join(map(str,xx)))
    A174034 = lambda x: next((p for p in Primes() if is_prime(concat([nth_prime(x), nth_prime(x+1), p])))) # D. S. McNeil, Dec 02 2010
    

Extensions

Edited and terms checked by D. S. McNeil, Dec 01 2010

A239789 Primes which are a concatenation of prime(k), prime(k+2) and prime(k+4) for some k.

Original entry on oeis.org

172331, 233141, 717989, 137149157, 191197211, 197211227, 223229239, 229239251, 257269277, 331347353, 353367379, 359373383, 467487499, 521541557, 617631643, 619641647, 647659673, 677691709, 733743757, 787809821, 797811823, 103310491061, 106110691091, 109711091123
Offset: 1

Views

Author

K. D. Bajpai, Mar 26 2014

Keywords

Examples

			172331 is a prime and appears in the sequence because it is the concatenation of prime(7), prime(7+2) and prime(7+4).
233141 is a prime and appears in the sequence because it is the concatenation of prime(9), prime(9+2) and prime(9+4).
		

Crossrefs

Programs

  • Maple
    with(StringTools): KD := proc() local a,b,d,e; a:=ithprime(n); b:=ithprime(n+2); d:=ithprime(n+4);
    e:= parse(cat(a,b,d)); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..500);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[Prime[n]], IntegerDigits[Prime[n+2]], IntegerDigits[Prime[n+4]]}]], {n,1,500}],PrimeQ]

A248046 Primes p such that p^2 is the concatenation of two k-digit primes where k is half the length of p^2.

Original entry on oeis.org

5, 73, 337, 409, 701, 827, 5449, 5477, 5939, 6841, 7417, 8353, 8573, 9109, 9227, 9311, 9733, 9767, 32569, 34319, 34327, 34501, 35933, 35999, 38371, 38449, 38923, 38953, 39023, 39367, 39671, 40531, 40973, 42701, 43543, 44651, 45259, 46021, 47623, 48311, 49531, 50923, 54133, 54437, 54547
Offset: 1

Views

Author

Derek Orr, Oct 03 2014

Keywords

Examples

			73 is prime, and 73^2 = 5329 is the concatenation of two 2-digit primes (53 and 29). So 73 is a member of this sequence.
929 is not in the sequence since 929^2 = 863041, where 863 is a 3-digit prime but 041 is a 2-digit prime. - _Jens Kruse Andersen_, Oct 06 2014
		

Crossrefs

Programs

  • PARI
    forprime(p=1,10^5,d=digits(p^2);if((#d)%2==0,if(isprime((p^2)\(10^(#d/2)))&&isprime((p^2)%(10^(#d/2)))&&#Str((p^2)%(10^(#d/2)))==#d/2,print1(p,", "))))

Extensions

Terms and program corrected by Derek Orr to match definition, thanks to Jens Kruse Andersen

A248208 Primes p such that p^3 is the concatenation of two k-digit primes where k is half the number of decimal digits in p^3.

Original entry on oeis.org

3, 11, 47, 83, 1063, 1637, 1699, 7529, 7673, 23059, 28097, 29573, 34157, 34961, 36587, 40897, 43609, 44711, 101839, 102763, 103423, 104087, 104393, 106363, 117437, 117499, 124471, 125407, 126011, 129419, 134753, 135007, 137393, 139487, 143879, 143971, 145037
Offset: 1

Views

Author

Derek Orr, Oct 03 2014

Keywords

Examples

			47 is prime and 47^3 = 103823 is the concatenation of two primes (103 and 823) that are of the same length (here, their length is 3). So, 47 is a member of this sequence.
73 is not in the sequence since 73^3 = 389017, where 389 is a 3-digit prime but 017 is a 2-digit prime. - _Jens Kruse Andersen_, Oct 06 2014
		

Crossrefs

Programs

  • PARI
    forprime(p=1,10^6,d=digits(p^3);if((#d)%2==0,if(isprime((p^3)\(10^(#d/2)))&&isprime((p^3)%(10^(#d/2)))&&#Str((p^3)%(10^(#d/2)))==#d/2,print1(p,", "))))

Extensions

Terms and PARI program corrected by Jens Kruse Andersen, Oct 06 2014

A225120 Square numbers whose decimal representation can be divided into two or more semiprimes.

Original entry on oeis.org

49, 64, 144, 256, 576, 625, 1156, 1296, 1444, 1521, 2209, 2916, 3364, 3844, 3969, 4096, 4356, 4489, 4624, 6889, 7744, 8649, 9025, 9216, 9409, 9604, 10201, 10404, 10609, 10816, 12321, 12996, 13456, 14161, 15129, 15376, 15625, 15876, 17956, 18496, 18769, 20164
Offset: 1

Views

Author

Keywords

Comments

For 300 < n < 10000, 12.77*n^1.86 provides an estimate of a(n) to within 10%.
The density of squares included in the sequence asymptotically approaches 1.
There are infinitely many squares that are not in the sequence. For example, no square ending in 0 can be in the sequence. Another such infinite class is given by (50k+5)^2, for k>0. Indeed, these squares all end in "025" and since the only semiprime ending in 25 is 25 itself, then the other semiprime must end in 0, but this is impossible since the only semiprime ending in 0 is 10. - Giovanni Resta, May 03 2013

Examples

			a(50) = 25921, which is 161^2, and can be separated into semiprimes three ways: 25|921, 25|9|21, and 259|21.
		

Crossrefs

Programs

  • R
    issemipr<-function(n) ifelse(n<4,F,length(factorize(n))==2)
    splithasproperty<-function(n,FUN,curdig=1,res=list(),curspl=c()) {
        no0<-function(s){ while(substr(s,1,1)=="0" & nchar(s)>1) s=substr(s,2,nchar(s)); s}
        s=as.character(n)
        if(curdig>nchar(s)) return(res)
        if(length(curspl)>0) if(FUN(as.bigz(no0(substr(s,curdig,nchar(s)))))) res[[length(res)+1]]=curspl
        for(i in curdig:nchar(s))
            if(FUN(as.bigz(no0(substr(s,curdig,i)))))
                res=splithasproperty(n,FUN,i+1,res,c(curspl,i))
        res
    }
    which(sapply(1:100,function(x) length(splithasproperty(x^2,issemipr))>0))^2

A225151 Squares which are a decimal concatenation of triprimes.

Original entry on oeis.org

12544, 15376, 19044, 20164, 27556, 28561, 42436, 45369, 45796, 75076, 81796, 86436, 87025, 89401, 98596, 114244, 116964, 123201, 124609, 125316, 126025, 127449, 128164, 131044, 139876, 141376, 150544, 174724, 175561, 184041, 188356, 190969, 191844, 207025
Offset: 1

Views

Author

Keywords

Examples

			a(10) is 75076, which splits into 75|076. 75 = 3*5*5; 76 = 2*2*19.
		

Crossrefs

Programs

  • R
    library(gmp); istriprime=function(x) ifelse(x<8, F, length(factorize(x))==3)
    splithasproperty<-function(n, FUN, curdig=1, res=list(), curspl=c()) {
    no0<-function(s){ while(substr(s, 1, 1)=="0" & nchar(s)>1) s=substr(s, 2, nchar(s)); s}
        s=as.character(n)
        if(curdig>nchar(s)) return(res)
        if(length(curspl)>0) if(FUN(as.bigz(no0(substr(s, curdig, nchar(s)))))) res[[length(res)+1]]=curspl
        for(i in curdig:nchar(s))
            if(FUN(as.bigz(no0(substr(s, curdig, i)))))
                res=splithasproperty(n, FUN, i+1, res, c(curspl, i))
        res
    }
    which(sapply(1:500, function(x) length(splithasproperty(x^2, istriprime)))>0)^2

A239974 Primes which are a concatenation of prime(k+4), prime(k+2) and prime(k) for some k.

Original entry on oeis.org

1373, 433729, 615343, 797161, 837367, 897971, 149137127, 193181173, 227211197, 337317311, 367353347, 401389379, 443433421, 557541521, 577569557, 587571563, 757743733, 811797773, 823811797, 10191009991, 10211013997, 116311511123, 120111871171, 130713011291
Offset: 1

Views

Author

K. D. Bajpai, Mar 30 2014

Keywords

Comments

All the terms in the sequence are primes which are a reverse concatenation of prime(k), prime(k+2) and prime(k+4) for some k.

Examples

			1373 is a prime and appears in the sequence because it is the concatenation of prime(2+4), prime(2+2) and prime(2).
433729 is a prime and appears in the sequence because it is the concatenation of prime(10+4), prime(10+2) and prime(10).
		

Crossrefs

Programs

  • Maple
    with(StringTools): KD := proc() local a, b, d, e; a:=ithprime(n+4); b:=ithprime(n+2); d:=ithprime(n);  e:= parse(cat(a, b, d)); if isprime(e) then RETURN (e); fi; end: seq(KD(), n=1..500);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[Prime[n+4]],IntegerDigits[Prime[n+2]], IntegerDigits[Prime[n]]}]], {n,1,500}], PrimeQ]

A253245 Primes that are the concatenation of prime(n) and prime(n+2).

Original entry on oeis.org

37, 1117, 1319, 1723, 4759, 89101, 97103, 101107, 113131, 151163, 181193, 223229, 227233, 239251, 251263, 293311, 313331, 337349, 389401, 421433, 461467, 491503, 587599, 631643, 647659, 683701, 691709, 701719, 739751, 761773, 809821
Offset: 1

Views

Author

Altug Alkan, Aug 22 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=300,pr},pr={#[[1]],#[[3]]}&/@Partition[Prime[Range[nn]],3,1];Select[Table[FromDigits[Flatten[IntegerDigits/@pr[[n]]]],{n, Length[ pr]}],PrimeQ]] (* Harvey P. Dale, Nov 29 2015 *)
  • PARI
    for(n=1, 1e3, if(isprime(k=eval(Str(prime(n), prime(n+2)))), print1(k", ")))

A258214 Primes formed by concatenating p^2 with q, where p, q are consecutive primes.

Original entry on oeis.org

43, 257, 12113, 84131, 96137, 168143, 372167, 32041181, 120409349, 139129379, 292681547, 410881643, 516961727, 528529733, 863041937, 966289991, 10629611033, 10670891039, 11902811093, 16307291279, 21112091459, 25058891597, 29618411723, 31933691789, 35006411873
Offset: 1

Views

Author

K. D. Bajpai, May 23 2015

Keywords

Comments

All the terms in this sequence, except a(1), are congruent to 2 (mod 3).

Examples

			a(2) = 257 is prime formed by concatenation of (5^2) = 25 with 7.
a(3) = 12113 is prime formed by concatenation of (11^2) = 121 with 13.
		

Crossrefs

Programs

  • Magma
    [m: n in [1..300] | IsPrime(m) where m is Seqint(Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)^2))]; // Vincenzo Librandi, May 24 2015
  • Mathematica
    Select[Table[p = Prime[n]; FromDigits[Join[Flatten[ IntegerDigits[{p^2, NextPrime[p]}]]]], {n, 500}], PrimeQ]
    Select[#[[1]]^2*10^IntegerLength[#[[2]]]+#[[2]]&/@Partition[Prime[ Range[ 300]],2,1],PrimeQ] (* Harvey P. Dale, Dec 05 2016 *)
  • PARI
    forprime(p = 1,5000, k=eval(concat( Str(p^2), Str(nextprime(p+1)) )); if(isprime(k), print1(k,", ")))
    
Previous Showing 11-20 of 21 results. Next