cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A054635 Champernowne sequence: write n in base 3 and juxtapose.

Original entry on oeis.org

0, 1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Essentially the same as A003137. - R. J. Mathar, Aug 29 2009
An irregular table in which the n-th row lists the base-3 digits of n. - Jason Kimberley, Dec 07 2012
The base-3 Champernowne constant (A077771): it is normal in base 3. - Jason Kimberley, Dec 07 2012

Crossrefs

Cf. A054637 (partial sums).
Cf. A081604 (row lengths), A053735 (row sums), A030341 (rows reversed), A007089, A077771.
Table in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and this sequence (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012

Programs

  • Haskell
    a054635 n k = a054635_tabf !! n !! k
    a054635_row n = a054635_tabf !! n
    a054635_tabf = map reverse a030341_tabf
    a054635_list = concat a054635_tabf
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,3)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 3] &, 105, 0] (* Robert G. Wilson v, Jun 29 2014 *)
    First[RealDigits[ChampernowneNumber[3], 3, 100, 0]] (* Paolo Xausa, Jun 19 2024 *)
  • Python
    from sympy.ntheory.digits import digits
    def agen(limit):
        for n in range(limit):
            yield from digits(n, 3)[1:]
    print([an for an in agen(35)]) # Michael S. Branicky, Sep 01 2021

A378347 Continued fraction expansion of the base 6 Champernowne constant.

Original entry on oeis.org

0, 4, 5, 1, 10, 1, 4, 3, 9, 1, 2, 2, 1, 1, 699745284439054751106354294914368414245, 2, 5, 1, 20, 22, 2, 2, 1, 10, 3, 1, 2, 2, 2, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Joshua Searle, Dec 13 2024

Keywords

Comments

The next term a(34) is approximately equal to 1.21 * 10^364.

Crossrefs

Cf. A030548 (base 6 expansion), A378330 (decimal expansion).
Other continued fractions: A066717, A077772, A378345, A378346, A378348, A378349, A378350, A030167.

Programs

  • Mathematica
    ContinuedFraction[ChampernowneNumber[6], 100]

A378328 Decimal expansion of the base 4 Champernowne constant.

Original entry on oeis.org

4, 2, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 6, 5, 7, 6, 4, 5, 5, 6, 5, 7, 1, 4, 2, 0, 1, 6, 1, 9, 8, 5, 0, 9, 5, 5, 4, 6, 2, 3, 8, 9, 6, 7, 2, 3, 0, 4, 1, 0, 6, 8, 2, 7, 9, 1, 6, 3, 5, 1, 7, 2, 5, 8, 7, 5, 5, 3, 5, 3, 9, 9, 3, 4, 4, 9, 2, 3, 1, 5, 4, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 4 and then converted into base 10.
This constant is 4-normal.

Examples

			0.426111111111111065764556571420161985095546238967230410682791635172587553...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[4], 10, 100]]

A378329 Decimal expansion of the base 5 Champernowne constant.

Original entry on oeis.org

3, 1, 0, 7, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 9, 6, 3, 0, 3, 3, 3, 1, 1, 6, 0, 4, 9, 4, 4, 8, 4, 9, 1, 1, 5, 5, 0, 4, 6, 8, 2, 6, 2, 2, 2, 6, 8, 4, 7, 0, 3, 4, 3, 3, 9, 2, 2, 9, 9, 6, 8, 7, 8, 2, 5, 1, 8, 2, 1, 0, 1
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 5 and then converted into base 10.
This constant is 5-normal.

Examples

			0.310736111111111111111111111110963033311604944849115504682622268470343392...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[5], 10, 100]]

A378330 Decimal expansion of the base 6 Champernowne constant.

Original entry on oeis.org

2, 3, 9, 8, 6, 2, 6, 8, 5, 8, 1, 5, 0, 6, 6, 7, 6, 7, 4, 4, 7, 7, 1, 9, 8, 2, 8, 6, 7, 2, 2, 0, 9, 6, 2, 4, 5, 9, 0, 5, 7, 6, 9, 7, 1, 5, 2, 9, 3, 5, 0, 2, 1, 3, 7, 6, 0, 6, 9, 3, 1, 9, 5, 6, 3, 1, 5, 7, 6, 5, 8, 3, 4, 3, 7, 7, 5, 4, 8, 3, 0, 5, 0, 7, 8, 0, 4
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 6 and then converted into base 10.
This constant is 6-normal.

Examples

			0.239862685815066767447719828672209624590576971529350213760693195631576583...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[6], 10, 100]]

A378331 Decimal expansion of the base 7 Champernowne constant.

Original entry on oeis.org

1, 9, 4, 4, 3, 5, 5, 3, 5, 0, 8, 6, 2, 4, 0, 5, 2, 1, 4, 7, 5, 8, 4, 0, 0, 9, 3, 0, 8, 2, 9, 0, 8, 5, 7, 6, 4, 5, 2, 9, 3, 2, 9, 7, 1, 0, 5, 0, 4, 2, 2, 1, 1, 2, 4, 7, 9, 5, 8, 8, 5, 3, 1, 2, 3, 3, 6, 7, 9, 0, 8, 8, 7, 3, 9, 4, 0, 3, 5, 6, 6, 3, 9, 7, 0, 8, 5
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 7 and then converted into base 10.
This constant is 7-normal.

Examples

			0.194435535086240521475840093082908576452932971050422112479588531233679088...
		

Crossrefs

(base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[7], 10, 100]]

A378332 Decimal expansion of the base 8 Champernowne constant.

Original entry on oeis.org

1, 6, 3, 2, 6, 4, 8, 1, 2, 1, 0, 5, 2, 1, 6, 7, 9, 7, 3, 6, 7, 0, 9, 4, 9, 8, 6, 1, 4, 2, 6, 0, 5, 1, 9, 0, 2, 2, 4, 2, 3, 7, 8, 4, 3, 2, 8, 5, 4, 6, 2, 3, 3, 3, 0, 8, 1, 3, 8, 0, 7, 0, 0, 4, 2, 8, 3, 1, 9, 4, 7, 5, 9, 3, 8, 5, 2, 3, 5, 5, 7, 5, 7, 1, 1, 7, 6
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 8 and then converted into base 10.
This constant is 8-normal.

Examples

			0.163264812105216797367094986142605190224237843285462333081380700428319475...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[8], 10, 100]]

A378333 Decimal expansion of the base 9 Champernowne constant.

Original entry on oeis.org

1, 4, 0, 6, 2, 4, 9, 7, 6, 1, 1, 9, 6, 9, 6, 7, 8, 2, 4, 7, 9, 6, 6, 9, 0, 0, 8, 9, 3, 5, 6, 6, 3, 1, 8, 3, 2, 6, 5, 4, 5, 7, 0, 8, 3, 2, 4, 6, 8, 2, 8, 4, 8, 6, 6, 5, 7, 5, 5, 5, 1, 7, 1, 2, 7, 5, 4, 1, 4, 9, 1, 4, 8, 7, 8, 1, 8, 5, 4, 9, 5, 2, 4, 3, 6, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 9 and then converted into base 10.
This constant is 9-normal.

Examples

			0.140624976119696782479669008935663183265457083246828486657555171275414914...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[9], 10, 100]]

A030575 Run length of n-th run of digit 0 in A030567.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Differs from A030556 whenever a base 6 sequence of a number is inserted which has a non-palindromic sequence of run-lengths of 0. Happens first scanning 10010_6 = 1302_10 which is inserted in A030567 as 01001 (run lengths 1,2) but in A030548 as 10010 (run lengths 2,1). - R. J. Mathar, Jul 23 2025 and Andrei Zabolotskii

Extensions

Initial 1 inserted for consistency with change in A030567 and more terms from Sean A. Irvine, Apr 03 2020

A275993 Champernowne sequence: write n in base 16 and juxtapose.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 10, 2, 11, 2, 12, 2, 13, 2, 14, 2, 15, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 3, 11, 3
Offset: 0

Views

Author

Robert G. Wilson v, Aug 15 2016

Keywords

Comments

10 -> A, 11 -> B, 12 -> C, 13 -> D, 14 -> E & 15 -> F.

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10).

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b -1) i*b^(i -1) + l; i++]; i--; p = Mod[d -l, i]; q = Floor[(d -l)/i] + b^(i -1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q -1, b]]]; Array[ almostNatural[#, 16] &, 105, 0]
    First[RealDigits[ChampernowneNumber[16], 16, 100, 0]] (* Paolo Xausa, Jun 21 2024 *)
Previous Showing 31-40 of 40 results.