cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A063606 Smallest k >= 0 such that 7^k has exactly n 0's in its decimal representation.

Original entry on oeis.org

0, 4, 9, 13, 25, 55, 39, 41, 45, 70, 69, 65, 75, 107, 109, 134, 167, 142, 156, 196, 157, 205, 214, 180, 213, 183, 162, 251, 263, 276, 268, 290, 306, 295, 369, 313, 332, 293, 353, 340, 357, 387, 367, 476, 334, 509, 363, 474, 454, 488, 453
Offset: 0

Views

Author

Robert G. Wilson v, Aug 10 2001

Keywords

Crossrefs

Cf. A031146 (analog for 2^k), A063555 (analog for 3^k), A063575 (analog for 4^k), A063585 (for 5^k), A063596 (analog for 6^k).

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ Count[ IntegerDigits[7^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
    Module[{p7=DigitCount[#,10,0]&/@(7^Range[600]),nn=60},Join[{0},Flatten[ Table[ Position[p7,n,1,1],{n,nn}]]]] (* Harvey P. Dale, Apr 12 2022 *)
  • PARI
    A063606(n)=for(k=n, oo, #select(d->!d, digits(5^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018

A306112 Largest k such that 2^k has exactly n digits 0 (in base 10), conjectured.

Original entry on oeis.org

86, 229, 231, 359, 283, 357, 475, 476, 649, 733, 648, 696, 824, 634, 732, 890, 895, 848, 823, 929, 1092, 1091, 1239, 1201, 1224, 1210, 1141, 1339, 1240, 1282, 1395, 1449, 1416, 1408, 1616, 1524, 1727, 1725, 1553, 1942, 1907, 1945, 1870, 1724, 1972, 1965, 2075, 1983, 2114, 2257, 2256
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) is the largest term in A007377: exponents of powers of 2 without digit 0.
There is no proof for any of the terms, just as for any term of A020665 and many similar / related sequences. However, the search has been pushed to many magnitudes beyond the largest known term, and the probability of any of the terms being wrong is extremely small, cf., e.g., the Khovanova link.

Crossrefs

Cf. A031146: least k such that 2^k has n digits 0 in base 10.
Cf. A305942: number of k's such that 2^k has n digits 0.
Cf. A305932: row n lists exponents of 2^k with n digits 0.
Cf. A007377: { k | 2^k has no digit 0 } : row 0 of the above.
Cf. A238938: { 2^k having no digit 0 }.
Cf. A027870: number of 0's in 2^n (and A065712, A065710, A065714, A065715, A065716, A065717, A065718, A065719, A065744 for digits 1 .. 9).
Cf. A102483: 2^n contains no 0 in base 3.

Programs

  • PARI
    A306112_vec(nMax,M=99*nMax+199,x=2,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(x^k)),nMax)]=k);a[^-1]}

A063616 Smallest k >= 0 such that 8^k has exactly n 0's in its decimal representation.

Original entry on oeis.org

0, 4, 14, 23, 42, 33, 35, 34, 63, 66, 87, 116, 84, 101, 126, 164, 128, 102, 135, 143, 149, 155, 203, 224, 186, 204, 210, 237, 261, 218, 219, 286, 257, 266, 361, 355, 336, 302, 374, 339, 371, 398, 340, 409, 348, 388, 494, 436, 407, 406, 439
Offset: 0

Views

Author

Robert G. Wilson v, Aug 10 2001

Keywords

Crossrefs

Cf. A031146 (analog for 2^k), A063555 (analog for 3^k), A063575 (analog for 4^k), A063585 (for 5^k), A063596 (analog for 6^k), A063606 (analog for 7^k).

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ Count[ IntegerDigits[8^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
  • PARI
    A063616(n)=for(k=0, oo, #select(d->!d, digits(8^k))==n&&return(k)) \\ M. F. Hasler, Jun 14 2018

Extensions

a(0) changed to 0 (as in A031146, A063555, ...) and better title from M. F. Hasler, Jun 14 2018

A063626 Smallest k >= 0 such that 9^k has exactly n 0's in its decimal representation.

Original entry on oeis.org

0, 5, 11, 41, 33, 38, 42, 27, 60, 71, 63, 85, 94, 139, 96, 127, 157, 166, 131, 160, 170, 148, 190, 210, 212, 203, 221, 222, 218, 257, 223, 243, 250, 275, 302, 255, 273, 271, 333, 372, 270, 339, 371, 457, 408, 347, 402, 410, 483, 448, 355
Offset: 0

Views

Author

Robert G. Wilson v, Aug 10 2001

Keywords

Crossrefs

Cf. A031146 (analog for 2^k), A063555 (for 3^k), A063575 (for 4^k), A063585 (for 5^k), A063596 (for 6^k), A063606 (for 7^k), A063616 (for 8^k).

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ Count[ IntegerDigits[9^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a
  • PARI
    A063626(n)=for(k=0, oo, #select(d->!d, digits(9^k))==n&&return(k)) \\ M. F. Hasler, Jun 15 2018

Extensions

a(0) changed to 0 (as in A031146, A063555, ...) and better title from M. F. Hasler, Jun 15 2018

A031147 Smallest power of 2 containing exactly n zeros.

Original entry on oeis.org

1, 1024, 4398046511104, 8796093022208, 604462909807314587353088, 309485009821345068724781056, 1267650600228229401496703205376, 5070602400912917605986812821504, 784637716923335095479473677900958302012794430558004314112
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A031146.

Programs

  • Mathematica
    Table[SelectFirst[{#,DigitCount[#,10,0]}&/@(2^Range[0,2000]),#[[2]]==n&],{n,0,8}][[;;,1]] (* Harvey P. Dale, Sep 10 2024 *)
  • PARI
    A031147(n)=for(k=n, oo, #select(d->!d, digits(2^k))==n&&return(2^k)) \\ M. F. Hasler, Jun 15 2018

Formula

a(n) = 2^A031146(n). - M. F. Hasler, Jun 15 2018 (corrected by Sean A. Irvine, Apr 11 2020)

Extensions

More terms from Erich Friedman
a(8) added by M. F. Hasler, Jun 16 2018

A330790 Numbers k where 2^k in decimal has a record number of zeros.

Original entry on oeis.org

0, 10, 42, 43, 79, 88, 100, 102, 189, 198, 242, 250, 252, 262, 306, 368, 383, 447, 464, 466, 557, 628, 654, 657, 746, 771, 798, 905, 988, 989, 1044, 1114, 1118, 1217, 1316, 1461, 1486, 1493, 1703, 1705, 1753, 1926, 1993, 2122, 2159, 2368, 2462, 2502, 2594, 2680, 2739, 2900, 2936
Offset: 1

Views

Author

Chai Wah Wu, Feb 11 2020

Keywords

Comments

Where records occur in A027870. The numbers of zeros are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 21, 24, 25, 28, ...

Crossrefs

Previous Showing 11-16 of 16 results.