cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A030686 Smallest nontrivial extension of n^2 which is a square.

Original entry on oeis.org

16, 49, 900, 169, 256, 361, 4900, 6400, 8100, 10000, 12100, 1444, 16900, 19600, 22500, 25600, 28900, 3249, 36100, 40000, 44100, 48400, 52900, 57600, 62500, 67600, 72900, 78400, 84100, 90000, 96100, 102400, 108900, 115600, 122500
Offset: 1

Views

Author

Keywords

Comments

Nontrivial extension means appending at least one digit even if the number is already a square.

Crossrefs

See also A023110 = A031149^2 and A202303 = A031150^2 for a related concept, and cross-references there (and in links) for the analog in bases other than 10. - M. F. Hasler, Sep 28 2014

Formula

a(n) = A030687(n)^2. - M. F. Hasler, Sep 28 2014
a(n) = A030666(n^2). - Alonso del Arte, Apr 01 2020

A204504 A204512(n)^2 = floor[A055872(n)/8]: Squares such that appending some digit in base 8 yields another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 36, 144, 1225, 4900, 41616, 166464, 1413721, 5654884, 48024900, 192099600, 1631432881, 6525731524, 55420693056, 221682772224, 1882672131025, 7530688524100, 63955431761796, 255821727047184, 2172602007770041, 8690408031080164, 73804512832419600
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9),
A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7),
A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5),
A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3),
A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=8;for(n=1,2e9,issquare(n^2\b) & print1((n^2\b)","))
    
  • PARI
    a(n)=polcoeff(x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6+O(x^n)), n)

Formula

a(n)=A204512(n)^2.
G.f. = x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6)

A204575 Squares such that [a(n)/2] is again a square (A055792), written in binary.

Original entry on oeis.org

0, 1, 1001, 100100001, 10011001001001, 1010001010010000001, 101011001001001011001001, 10110111001100110101000100001, 1100001001111011011000010110001001, 110011100111010101001010101001000000001
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A204576 Floor[A055792(n-1)/2]=A084703(n-2) (truncated squares), written in binary.

Original entry on oeis.org

0, 0, 100, 10010000, 1001100100100, 101000101001000000, 10101100100100101100100, 1011011100110011010100010000, 110000100111101101100001011000100, 11001110011101010100101010100100000000, 1101101100101100000000000111010111101000100
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

A204575 with the last (binary) digit (necessarily = 1, except for a(1)=0) deleted.
Also: Squares, written in binary, such that appending a (binary) digit (necessarily = 1) yields another square (except for a(1)=0 which corresponds to A204575(1)=00, the only square which remains square when multiplied by 2).

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A204513 A204517(n)^2 = floor[A055859(n)/7]: Squares which written in base 7, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 9, 36, 289, 2304, 9216, 73441, 585225, 2340900, 18653761, 148644864, 594579456, 4737981889, 37755210249, 151020840996, 1203428746081, 9589674758400, 38358699033600, 305666163522721, 2435739633423369, 9742958533693476, 77638002106025089, 618668277214777344, 2474673108859109376, 19719746868766849921, 157139306672920022025, 628557226691680088100, 5008738066664673854881, 39912765226644470817024, 159651060906577883268096
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-7 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=7;for(n=0,200,issquare(n^2\b) & print1(n^2\b,","))
    
  • PARI
    A204513(n)=polcoeff((x^4 + 9*x^5 + 36*x^6 + 34*x^7 + 9*x^8 + 36*x^9 + x^10)/(1 - 255*x^3 + 255*x^6 - x^9+O(x^n)),n)

Formula

G.f. = (x^4 + 9*x^5 + 36*x^6 + 34*x^7 + 9*x^8 + 36*x^9 + x^10)/(1 - 255*x^3 + 255*x^6 - x^9)

A204577 Sqrt(floor[A204575(n)/2]), written in binary.

Original entry on oeis.org

0, 0, 10, 1100, 1000110, 110011000, 100101001010, 11011000100100, 10011101110001110, 1110010111100110000, 1010011101111110010010, 111101000000111000111100, 101100011100111010111010110
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

A289190 Numbers k such that k^2 with last digit deleted is a prime.

Original entry on oeis.org

5, 6, 14, 26, 44, 46, 56, 64, 74, 76, 86, 94, 106, 146, 154, 164, 206, 226, 236, 244, 254, 256, 274, 286, 296, 304, 314, 326, 344, 346, 364, 424, 436, 446, 454, 464, 506, 524, 536, 596, 614, 664, 674, 676, 686, 694, 706, 764, 776, 796, 826, 844, 854, 874, 944, 946
Offset: 1

Views

Author

K. D. Bajpai, Jun 27 2017

Keywords

Examples

			14 is in the sequence because 14^2 = 196; deleting the last digit gives 19 which is prime.
26 is in the sequence because 26^2 = 676; deleting the last digit gives 67 which is prime.
		

Crossrefs

Programs

  • Magma
    [n : n in [1 .. 2000] | IsPrime (Floor (n^2/10))];
    
  • Maple
    select(n -> isprime(floor(n^2/10)),[$1..2000]);
  • Mathematica
    fQ[n_] := PrimeQ@Quotient[n^2, 10]; Select[Range[1, 2000], fQ]
  • PARI
    isok(n) = isprime(n^2\10); \\ Michel Marcus, Jul 02 2017

A203719 A204521(n)^2 = floor[A055812(n)/5]: Squares which written in base 5, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 9, 16, 64, 441, 3025, 5184, 20736, 142129, 974169, 1669264, 6677056, 45765225, 313679521, 537497856, 2149991424, 14736260449, 101003831721, 173072640400, 692290561600, 4745030099481, 32522920134769, 55728852710976, 222915410843904
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

Base-5 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=5;for(n=0,1e7,issquare(n^2\b) & print1(n^2\b,","))

Formula

Conjecture: a(n) = 323*a(n-4)-323*a(n-8)+a(n-12) for n>13. - Colin Barker, Sep 20 2014
Empirical g.f.: -x^4*(x^9 +9*x^8 +64*x^7 +16*x^6 +118*x^5 +118*x^4 +64*x^3 +16*x^2 +9*x +1) / ((x -1)*(x +1)*(x^2 -4*x -1)*(x^2 +1)*(x^2 +4*x -1)*(x^4 +18*x^2 +1)). - Colin Barker, Sep 20 2014

Extensions

More terms from Colin Barker, Sep 20 2014

A204573 A204519(n)^2 = floor(A055851(n)/6): Squares which written in base 6, with some digit appended, yield another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 121, 400, 1600, 11881, 39204, 156816, 1164241, 3841600, 15366400, 114083761, 376437604, 1505750416, 11179044361, 36887043600, 147548174400, 1095432263641, 3614553835204, 14458215340816, 107341182792481, 354189388806400, 1416757555225600
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Comments

Base-6 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=6;for(n=0,1e7,issquare(n^2\b) & print1(n^2\b,","))

Formula

Conjecture: a(n) = 99*a(n-3)-99*a(n-6)+a(n-9) for n>10. - Colin Barker, Sep 20 2014
Empirical g.f.: -x^4*(x^6+16*x^5+4*x^4+22*x^3+16*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-98*x^3+1)). - Colin Barker, Sep 20 2014

A204574 Numbers such that floor[a(n)^2/2] is a square (A001541), written in binary.

Original entry on oeis.org

0, 1, 11, 10001, 1100011, 1001000001, 110100100011, 100110010010001, 11011111001000011, 10100010100100000001, 1110110011011111000011, 1010110010010010110010001, 111110110111010100110100011, 101101110011001101010001000001
Offset: 1

Views

Author

M. F. Hasler, Jan 16 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).
Previous Showing 11-20 of 21 results. Next