cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A197040 Occurrences of edge-lengths of Euler bricks in every 100 consecutive integers.

Original entry on oeis.org

3, 8, 9, 8, 9, 9, 6, 9, 10, 8, 7, 9, 6, 8, 7, 8, 11, 6, 7, 8, 9, 8, 7, 6, 8, 10, 6, 6, 6, 8, 8, 8, 8, 9, 6, 9, 7, 6, 7, 8, 8, 9, 7, 11, 7, 8, 5, 9, 8, 9, 9, 7, 6, 7, 9, 6, 7, 9, 7, 8, 10, 5, 9, 7, 7, 7, 7, 6, 9, 9, 6, 8, 7, 9, 8, 6, 9, 5, 9, 9, 8, 6, 6, 7, 7
Offset: 1

Views

Author

Keywords

Comments

Distribution of edge-length occurrences for Euler bricks is remarkably near-uniform.

Examples

			For n=1 (i.e., the integers 1..100), there are only 3 possible edge-lengths for Euler bricks: 44, 85, 88.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 2, Diophantine Analysis, Dover, New York, 2005.
  • P. Halcke, Deliciae Mathematicae; oder, Mathematisches sinnen-confect., N. Sauer, Hamburg, Germany, 1719, page 265.

Crossrefs

cf. A195816, A196943, A031173, A031174, A031175. Edge lengths of Euler bricks are A195816; face diagonals are A196943.

Programs

  • Sage
    def a(n):
        ans = set()
        for x in range(100*(n-1)+1, 100*n+1):
            divs = Integer(x^2).divisors()
            for d in divs:
                if (d <= x^2/d): continue
                if (d-x^2/d)%2==0:
                    y = (d-x^2/d)/2
                    for e in divs:
                        if (e <= x^2/e): continue
                        if (e-x^2/e)%2==0:
                            z = (e-x^2/e)/2
                            if (y^2+z^2).is_square(): ans.add(x)
        return len(ans)  # Robin Visser, Jan 02 2024

A239618 Number of primitive Euler bricks with side length a < b < c < 10^n, i.e., in a boxed parameter space with dimension 10^n.

Original entry on oeis.org

0, 0, 5, 19, 65, 242, 704, 1884, 4631
Offset: 1

Views

Author

Martin Renner, Mar 22 2014

Keywords

Comments

An Euler brick is a cuboid of integer side dimensions a, b, c such that the face diagonals are integers. It is called primitive if gcd(a,b,c)=1.
Because the sides of a cuboid are permutable without changing its shape, the total number of primitive Euler bricks in the parameter space a, b, c < 10^n is b(n) = 6*a(n) = 0, 0, 30, 114, 390, ...

Examples

			a(3) = 5, since there are the five primitive Euler bricks [44, 117, 240], [85, 132, 720], [140, 480, 693], [160, 231, 792], [240, 252, 275] with longest side length < 1000.
		

Crossrefs

Programs

  • Sage
    def a(n):
        ans = 0
        for x in range(1,10^n):
            divs = Integer(x^2).divisors()
            for d in divs:
                if (d <= x^2/d): continue
                if (d-x^2/d >= 2*x): break
                if (d-x^2/d)%2==0:
                    y = (d-x^2/d)/2
                    for e in divs:
                        if (e <= x^2/e): continue
                        if (e-x^2/e >= 2*y): break
                        if (e-x^2/e)%2==0:
                            z = (e-x^2/e)/2
                            if (gcd([x,y,z])==1) and (y^2+z^2).is_square():
                                ans += 1
        return ans  # Robin Visser, Jan 01 2024

Extensions

a(6)-a(8) from Giovanni Resta, Mar 22 2014
a(9) from Robin Visser, Jan 01 2024

A239620 Number of Euler bricks with side length a < b < c < 10^n, i.e., in a boxed parameter space with dimension 10^n.

Original entry on oeis.org

0, 0, 10, 151, 1714, 17873, 180953, 1815841, 18174211
Offset: 1

Views

Author

Martin Renner, Mar 22 2014

Keywords

Comments

An Euler brick is a cuboid of integer side dimensions a, b, c such that the face diagonals are integers.
Because the sides of a cuboid are permutable without changing its shape, the total number of Euler bricks in the parameter space is b(n) = 6*a(n) = 0, 0, 60, 906, 10284, ...

Examples

			a(3) = 10, since there are the ten Euler bricks [44, 117, 240], [85, 132, 720], [88, 234, 480], [132, 351, 720], [140, 480, 693], [160, 231, 792], [176, 468, 960], [240, 252, 275], [480, 504, 550], [720, 756, 825] with longest side length < 1000.
		

Crossrefs

Programs

  • Sage
    def a(n):
        ans = 0
        for x in range(1,10^n):
            divs = Integer(x^2).divisors()
            for d in divs:
                if (d <= x^2/d): continue
                if (d-x^2/d >= 2*x): break
                if (d-x^2/d)%2==0:
                    y = (d-x^2/d)/2
                    for e in divs:
                        if (e <= x^2/e): continue
                        if (e-x^2/e >= 2*y): break
                        if (e-x^2/e)%2==0:
                            z = (e-x^2/e)/2
                            if (y^2+z^2).is_square():
                                ans += 1
        return ans  # Robin Visser, Jan 01 2024

Extensions

a(6)-a(8) from Giovanni Resta, Mar 22 2014
a(9) from Robin Visser, Jan 01 2024

A306120 Lengths of largest face diagonal in primitive Euler bricks or Pythagorean cuboids: possible values of max(d, e, f) for solutions to a^2 + b^2 = d^2, a^2 + c^2 = e^2, b^2 + c^2 = f^2 in coprime positive integers a, b, c, d, e, f.

Original entry on oeis.org

267, 373, 732, 825, 843, 1595, 1884, 2500, 2775, 3725, 3883, 6380, 6409, 8140, 8579, 9188, 9272, 9512, 11764, 12125, 13123, 14547, 14681, 14701, 19572, 20503, 20652, 24695, 25121, 25724, 29307, 30032, 30695, 31080, 32595, 34484, 37104, 37895, 38201, 38965
Offset: 1

Views

Author

M. F. Hasler, Oct 11 2018

Keywords

Comments

These are the values obtained as sqrt(A031173(n)^2 + A031174(n)^2), sorted by size (n = 3 yields 843, n = 4 yields 732) and duplicates removed: The first duplicate is 71402500^2 = A031173(1428)^2 + A031174(1428)^2 = A031173(1626)^2 + A031174(1626)^2, there is no other among the first 3500 terms.
This considers only the face diagonals, not the space diagonals.
See the main entry A031173 for links, cross-references, and further comments.

Crossrefs

Programs

  • PARI
    A306120=Set(vector(1000,n,sqrtint(A031173(n)^2+A031174(n)^2)))[1..-100] \\ Discard the last 100 values, which may have holes. This is empirical: better find the smallest sqrtint(A031173(n)^2+A031174(n)^2) with n > 1000 not in the set, and discard all elements larger than that.

Formula

A306120 = { sqrtint(A031173(n)^2+A031174(n)^2); n >= 1 }.

A340178 Euler brick triples, side dimensions (a,b,c) in increasing order for a.

Original entry on oeis.org

44, 117, 240, 85, 132, 720, 88, 234, 480, 132, 351, 720, 140, 480, 693, 160, 231, 792, 170, 264, 1440, 176, 468, 960, 187, 1020, 1584, 195, 748, 6336, 220, 585, 1200, 240, 252, 275, 255, 396, 2160, 264, 702, 1440, 280, 960, 1386, 308, 819, 1680, 320, 462, 1584
Offset: 1

Views

Author

Ctibor O. Zizka, Dec 30 2020

Keywords

Comments

How are primitive Euler bricks distributed in the (a,b,c) parameter space?

Crossrefs

A141029 Nearest integer to the space diagonal of the smallest (measured by the longest edge) primitive (gcd(a,b,c)=1) Euler bricks (a, b, c, sqrt(a^2 + b^2), sqrt(b^2 + c^2), sqrt(a^2 + c^2) are integers). If the space diagonal is an integer then the Euler brick is called a "perfect cuboid". There are no known perfect cuboids.

Original entry on oeis.org

271, 444, 855, 737, 840, 1887, 1893, 2537, 2897, 3961, 3816, 6596, 8595, 6383, 9260, 8327, 9525, 9405, 13454, 16525, 12122, 12167, 15336, 14721, 22943, 20988, 22444, 25844, 28443, 26336, 30382, 29714, 35079, 31094, 31700, 38989, 32965
Offset: 1

Views

Author

Darrell Minor, Jul 29 2008

Keywords

Examples

			a(1)=271 because sqrt(240^2 + 117^2 + 44^2) = 270.60, where 240 is the longest edge, 117 the intermediate edge and 44 the smallest edge, of the smallest primitive Euler brick.
		

Crossrefs

A297327 1/36 of the square of the basis of a primitive 3-simplex.

Original entry on oeis.org

6434041, 89002225, 865125625, 89610625, 353440516, 29160156025, 18989880481, 37434450625, 72399370000, 444515646025, 346008660625, 2003915162500, 9475360381201, 166729268761, 13110591519025, 8007417968121, 11201866562500, 3095696620900, 61956758281561
Offset: 1

Views

Author

Ralf Steiner, Dec 28 2017

Keywords

Comments

For every primitive trirectangular tetrahedron (0, a, b, c) with coprime integer sides, (b*c)^2 + (a*b)^2 + (c*a)^2 is divisible by 144.
The square of the basis is related by De Gua's theorem on the square of the main diagonal of a (different, not necessarily primitive) Euler brick (a*b/12=A031173(k), a*c/12=A031174(k), b*c/12=A031175(k)) also having integer sides and integer face diagonals including a trirectangular tetrahedron (0, a*b/12, a*c/12, b*c/12), such as a(1) = 6434041 = A023185(8) = A031173(8)^2 + A031174(8)^2 + A031175(8)^2.
By this process a cycle of primitive trirectangular tetrahedrons is defined, such as with indices k: (1 8), (2 6), (3 5), (4 7), (9 19), ...

Crossrefs

Formula

a(n) = (1/144)*(A031174(n)^2*A031175(n)^2 + A031173(n)^2*(A031174(n)^2 + A031175(n)^2)).
Previous Showing 11-17 of 17 results.