cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A030386 Triangle T(n,k): write n in base 4, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 1, 1, 2, 1, 3, 1, 0, 2, 1, 2, 2, 2, 3, 2, 0, 3, 1, 3, 2, 3, 3, 3, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 0, 3, 1, 1, 3, 1, 2, 3, 1, 3, 3, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 3, 0, 2, 0, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
0
1
2
3
0, 1
1, 1
2, 1
3, 1
0, 2
1, 2
2, 2
3, 2
0, 3
1, 3
2, 3
3, 3
0, 0, 1
1, 0, 1 ... - _Philippe Deléham_, Oct 20 2011
		

Crossrefs

Cf. A030308, A030341, A031235, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Cf. A007090.

Programs

  • Haskell
    a030386 n k = a030386_tabf !! n !! k
    a030386_row n = a030386_tabf !! n
    a030386_tabf = iterate succ [0] where
       succ []     = [1]
       succ (3:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A030386_row := n -> op(convert(n, base, 4)):
    seq(A030386_row(n), n=0..36); # Peter Luschny, Nov 28 2017
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,4]],{n,0,50}]] (* Harvey P. Dale, Oct 13 2012 *)
  • PARI
    A030386(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\4^k%4 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... \\ M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A031087 Triangle T(n,k): write n in base 9, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031298 for the base-2 to base-10 analogs.

Programs

  • Haskell
    a031087 n k = a031087_row n !! (k-1)
    a031087_row n | n < 9     = [n]
                  | otherwise = m : a031087_row n' where (n',m) = divMod n 9
    a031087_tabf = map a031087_row [0..]
    -- Reinhard Zumkeller, Jul 07 2015
  • PARI
    A031087(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\9^k%9 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030567 and others. - M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A031045 Triangle T(n,k): write n in base 8, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 7, 5, 0, 6, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Maple
    seq(op(convert(n,base,8)),n=0..100); # Robert Israel, Jul 22 2019
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,8]],{n,80}]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    A031045(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.");*/n\8^k%8 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... Note: The operation could be done using bitwise arithmetic, bitand(n>>(3*k),7), but this is not significantly faster in PARI. - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A031007 Triangle T(n,k): Write n in base 7, reverse order of digits, to get row n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 0, 5, 1, 5, 2, 5, 3, 5, 4, 5, 5, 5, 6, 5, 0, 6, 1, 6, 2, 6, 3, 6, 4, 6, 5, 6, 6, 6
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A031235, A030567, A031045, A031087, A031298 for the base-2 to base-10 analogs.

Programs

  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,7]],{n,0,50}]] (* Harvey P. Dale, Feb 25 2014 *)
  • PARI
    A031007(n, k=-1)={k<0&&error("Flattened sequence not yet implemented.");n\7^k%7} \\ Assuming that columns start with k=0 as in A030308, A030341, ... TO DO: implement flattened sequence, such that A030567(n)=a(n). - M. F. Hasler, Jul 21 2013

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A097863 Sum of 5-infinitary divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 33, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 99, 84, 144, 68, 126, 96, 144, 72, 195, 74, 114, 124
Offset: 1

Views

Author

Keywords

Comments

If n=Product p_i^r_i and d=Product p_i^s_i, each s_i has a digit a<=b in its 5-ary expansion everywhere that the corresponding r_i has a digit b, then d is a 5-infinitary-divisor of n.

Examples

			a(32) = a(2^10) = 2^10 + 2^0 = 32 + 1 = 33, in 5-ary expansion. This is the first term which is different from sigma(n).
		

Crossrefs

Programs

  • Haskell
    following Bower and Harris, cf. A049418:
    a097863 1 = 1
    a097863 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000351_list $ map (+ 1) $ a031235_row e)
               (map (subtract 1 . (p ^)) a000351_list)
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A097863 := proc(n) option remember; local ifa, a, p, e, d, k ; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1, op(1, ifa)) ; e := op(2, op(1, ifa)) ; d := convert(e, base, 5) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1, d))*5^k)-1)/(p^(5^k)-1) ; end do: else for d in ifa do a := a*procname( op(1, d)^op(2, d)) ; end do: return a; end if; end proc:
  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 5]}, m = Length[d]; Product[(p^((d[[j]] + 1)*5^(m - j)) - 1)/(p^(5^(m - j)) - 1), {j, 1, m}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)

Formula

Denote by P_5={p^5^k} the two-parameter set when k=0,1,... and p runs prime values. Then every n has a unique representation of the form n=prod q_i prod (r_j)^2 prod (s_k)^3 prod (t_m)^4, where q_i, r_j, s_k, t_m are distinct elements of P_5. Using this representation, we have a(n)=prod (q_i+1)prod ((r_j)^2+r_j+1)prod ((s_k)^3+(s_k)^2+s_k+1) prod ((t_m)^4+(t_m)^3+(t_m)^2+t_m+1). - Vladimir Shevelev, May 08 2013
Previous Showing 21-25 of 25 results.