A034051
Numbers with multiplicative digital root value 4.
Original entry on oeis.org
4, 14, 22, 27, 39, 41, 72, 89, 93, 98, 114, 122, 127, 139, 141, 172, 189, 193, 198, 212, 217, 221, 249, 266, 271, 277, 294, 319, 333, 338, 346, 364, 379, 383, 391, 397, 411, 429, 436, 463, 492, 626, 634, 643, 662, 677, 712, 721, 727, 739, 767, 772, 776, 793
Offset: 1
-
mdr:= proc(n) option remember;
if n < 10 then return(n) fi;
procname(convert(convert(n,base,10),`*`))
end proc:
select(mdr=4, [$1..10^5]); # Robert Israel, Oct 19 2015
-
Select[Range@ 800, FixedPoint[Times @@ IntegerDigits@ # &, #] == 4 &] (* Michael De Vlieger, Oct 19 2015 *)
-
t(n) = {while(n>9, n=prod(i=1, #n=digits(n), n[i])); n};
for(n=0, 1e4, if(t(n) == 4, print1(n", "))); \\ Altug Alkan, Oct 19 2015
A034049
Numbers with multiplicative digital root value 2.
Original entry on oeis.org
2, 12, 21, 26, 34, 37, 43, 62, 73, 112, 121, 126, 134, 137, 143, 162, 173, 211, 216, 223, 232, 261, 278, 279, 287, 297, 299, 314, 317, 322, 341, 367, 369, 371, 376, 389, 396, 398, 413, 431, 447, 469, 474, 496, 612, 621, 637, 639, 649, 666, 673, 693, 694, 713
Offset: 1
-
A031347:= proc(n) local x;
x:= n;
while x > 10 do
x:= convert(convert(x,base,10),`*`)
od;
x
end proc:
select(A031347=2, [$1..1000]); # Robert Israel, Jan 23 2023
-
t = {}; n = 0; While[Length[t] < 100, n++; s = n; While[s > 10, s = Times @@ IntegerDigits[s]]; If[s == 2, AppendTo[t, n]]]; t (* T. D. Noe, Nov 15 2011 *)
-
t(n) = {while(n>9, n=prod(i=1, #n=digits(n), n[i])); n};
for(n=0, 1e3, if(t(n) == 2, print1(n", "))); \\ Altug Alkan, Oct 19 2015
A034053
Numbers with multiplicative digital root value 6.
Original entry on oeis.org
6, 16, 23, 28, 32, 44, 47, 48, 61, 68, 74, 82, 84, 86, 116, 123, 128, 132, 144, 147, 148, 161, 168, 174, 182, 184, 186, 213, 218, 224, 227, 228, 231, 238, 242, 244, 246, 264, 267, 272, 276, 281, 282, 283, 288, 289, 298, 312, 321, 328, 344, 347, 368, 374, 377
Offset: 1
-
mdr6Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==6; Select[Range[400],mdr6Q] (* Harvey P. Dale, Jul 14 2024 *)
A034055
Numbers with multiplicative digital root value 8.
Original entry on oeis.org
8, 18, 24, 29, 36, 38, 42, 46, 49, 63, 64, 66, 67, 76, 77, 79, 81, 83, 88, 92, 94, 97, 99, 118, 124, 129, 136, 138, 142, 146, 149, 163, 164, 166, 167, 176, 177, 179, 181, 183, 188, 192, 194, 197, 199, 214, 219, 222, 226, 229, 233, 234, 236, 237, 241, 243, 248
Offset: 1
-
dr8Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==8; Select[ Range[ 250],dr8Q] (* Harvey P. Dale, Jun 10 2011 *)
A034054
Numbers with multiplicative digital root value 7.
Original entry on oeis.org
7, 17, 71, 117, 171, 711, 1117, 1171, 1711, 7111, 11117, 11171, 11711, 17111, 71111, 111117, 111171, 111711, 117111, 171111, 711111, 1111117, 1111171, 1111711, 1117111, 1171111, 1711111, 7111111, 11111117, 11111171, 11111711, 11117111
Offset: 1
-
Sort[Flatten[Table[FromDigits/@Permutations[Join[{7},PadRight[{},n,1]]],{n,0,10}]]] (* Harvey P. Dale, Jul 20 2015 *)
-
t(k)=while(k>9, k=prod(i=1, #k=digits(k), k[i])); k
for(n=1, 1e8, if(t(n) == 7, print1(n, ", "))); \\ Altug Alkan, Oct 22 2015
A034050
Numbers with multiplicative digital root value 3.
Original entry on oeis.org
3, 13, 31, 113, 131, 311, 1113, 1131, 1311, 3111, 11113, 11131, 11311, 13111, 31111, 111113, 111131, 111311, 113111, 131111, 311111, 1111113, 1111131, 1111311, 1113111, 1131111, 1311111, 3111111, 11111113, 11111131, 11111311, 11113111
Offset: 1
-
seq(seq((10^m-1)/9 + 2*10^j,j=0..m-1),m=1..10); # Robert Israel, Sep 27 2016
-
Sort[Flatten[Table[FromDigits/@Permutations[Join[{3},PadRight[{},n,1]]],{n,0,8}]]] (* Harvey P. Dale, Jul 16 2012 *)
-
# through 8-digit terms
print([int("1"*(d-i)+"3"+"1"*i) for d in range(8) for i in range(d+1)]) # Michael S. Branicky, Mar 13 2021
A034056
Numbers with multiplicative digital root value 9.
Original entry on oeis.org
9, 19, 33, 91, 119, 133, 191, 313, 331, 911, 1119, 1133, 1191, 1313, 1331, 1911, 3113, 3131, 3311, 9111, 11119, 11133, 11191, 11313, 11331, 11911, 13113, 13131, 13311, 19111, 31113, 31131, 31311, 33111, 91111, 111119, 111133, 111191, 111313, 111331
Offset: 1
-
Module[{nn=6,ne,te},ne=Union[FromDigits/@Flatten[Permutations/@Table[PadRight[{9},n,1],{n,nn}],1]];te=Rest[Union[FromDigits/@ Flatten[ Permutations/@Table[PadRight[{3,3},n,1],{n,nn}],1]]];Join[ne,te]]//Sort (* Harvey P. Dale, Apr 14 2025 *)
A028843
Numbers whose iterated product of digits is a prime.
Original entry on oeis.org
2, 3, 5, 7, 12, 13, 15, 17, 21, 26, 31, 34, 35, 37, 43, 51, 53, 57, 62, 71, 73, 75, 112, 113, 115, 117, 121, 126, 131, 134, 135, 137, 143, 151, 153, 157, 162, 171, 173, 175, 211, 216, 223, 232, 261, 278, 279, 287, 297, 299, 311, 314, 315, 317, 322, 341, 351, 355
Offset: 1
For 53, the product of digits is 5 * 3 = 15, iterated to 1 * 5 = 5, which is a prime, so 53 is in the sequence.
For 54, the product of digits is 5 * 4 = 20, iterated to 2 * 0 = 0, which is not prime, so 54 is not in the sequence.
-
iterDigitProd[n_] := NestWhile[Times@@IntegerDigits[#] &, n, # > 9 &]; Select[Range[355], PrimeQ[iterDigitProd[#]] &] (* Jayanta Basu, Jun 02 2013 *)
-
def iterDigitProd(n: Int): Int = n.toString.length match {
case 1 => n
case => iterDigitProd(n.toString.toCharArray.map( - 48).scanRight(1)( * ).head)
}
(1 to 400).filter(n => List(2, 3, 5, 7).contains(iterDigitProd(n))) // Alonso del Arte, Apr 11 2020
A350180
Numbers of multiplicative persistence 1 which are themselves the product of digits of a number.
Original entry on oeis.org
10, 12, 14, 15, 16, 18, 20, 21, 24, 30, 32, 40, 42, 50, 60, 70, 80, 81, 90, 100, 105, 108, 112, 120, 140, 150, 160, 180, 200, 210, 240, 250, 270, 280, 300, 320, 350, 360, 400, 405, 420, 450, 480, 490, 500, 504, 540, 560, 600, 630, 640, 700, 720, 750, 800
Offset: 1
10 is in this sequence because:
- 10 goes to a single digit in 1 step: p(10) = 0.
- 25, 52, 125, 152, 215, 512, 251, 521, 1125, 1152, 1215, 1512, 1251, 1521, 2115, 5112, 2511, 5211, etc. all lead to 10, i.e., p(25)=10, p(52)=10, etc.
Some of these (25, 125, 512, 1125, 1152, 1215, 1512) are in the next layer of classes, A350181, and the rest are not.
12 is in this sequence because:
- 12 goes to a single digit in 1 step: p(12) = 2.
- 12, 21, 112, 211, 121, 11112, 11211, etc. all lead to 12.
(12, 21 and 112 are in the next layer of classes, A350181, but the rest are not)
14 is in this sequence because:
- 14 goes to a single digit in 1 step: p(14) = 4.
- 27, 72, 127, 172, 217, 712, 271, 721, 12111711, etc. all lead to 14.
(27 and 72 are in the next layer of classes, A350181, the rest are not).
Cf.
A003001 (smallest number with multiplicative persistence n),
A031346 (multiplicative persistence),
A031347 (multiplicative digital root),
A046510 (all numbers with mp of 1).
-
mp(n)={my(k=0); while(n>=10, k++; n=vecprod(digits(n))); k}
isparent(n)={my(m=0); while(m<>n, m=n; n/=gcd(n,2*3*5*7)); n==1}
isok(n)={mp(n)==1 && isparent(n)} \\ Andrew Howroyd, Dec 20 2021
A263473
Total number of positive integers < 10^n with multiplicative digital root value 5.
Original entry on oeis.org
1, 7, 40, 172, 607, 2073, 7414, 26070, 84099, 243529, 636130, 1518166, 3354325, 6940831, 13579716, 25318372, 45270813, 78039555, 130259668, 211289368, 334074499, 516217405, 781284010, 1160386410, 1694081935, 2434633461, 3448679742, 4820368690, 6655010857
Offset: 1
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..50
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 5 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* Michael De Vlieger, Oct 21 2015 *)
-
t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
a(n) = sum(i=1, 10^n - 1, if(t(i) == 5, 1, 0)); \\ Altug Alkan, Oct 19 2015
Comments