cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A034051 Numbers with multiplicative digital root value 4.

Original entry on oeis.org

4, 14, 22, 27, 39, 41, 72, 89, 93, 98, 114, 122, 127, 139, 141, 172, 189, 193, 198, 212, 217, 221, 249, 266, 271, 277, 294, 319, 333, 338, 346, 364, 379, 383, 391, 397, 411, 429, 436, 463, 492, 626, 634, 643, 662, 677, 712, 721, 727, 739, 767, 772, 776, 793
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Crossrefs

Cf. A031347.
Cf. A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 0-9).

Programs

  • Maple
    mdr:= proc(n) option remember;
    if n < 10 then return(n) fi;
    procname(convert(convert(n,base,10),`*`))
    end proc:
    select(mdr=4, [$1..10^5]); # Robert Israel, Oct 19 2015
  • Mathematica
    Select[Range@ 800, FixedPoint[Times @@ IntegerDigits@ # &, #] == 4 &] (* Michael De Vlieger, Oct 19 2015 *)
  • PARI
    t(n) = {while(n>9, n=prod(i=1, #n=digits(n), n[i])); n};
    for(n=0, 1e4, if(t(n) == 4, print1(n", "))); \\ Altug Alkan, Oct 19 2015

Extensions

Incorrect formula removed by Martin Renner, Oct 19 2015

A034049 Numbers with multiplicative digital root value 2.

Original entry on oeis.org

2, 12, 21, 26, 34, 37, 43, 62, 73, 112, 121, 126, 134, 137, 143, 162, 173, 211, 216, 223, 232, 261, 278, 279, 287, 297, 299, 314, 317, 322, 341, 367, 369, 371, 376, 389, 396, 398, 413, 431, 447, 469, 474, 496, 612, 621, 637, 639, 649, 666, 673, 693, 694, 713
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Crossrefs

Cf. A031347.
Cf. A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 0-9).

Programs

  • Maple
    A031347:= proc(n) local x;
      x:= n;
      while x > 10 do
        x:= convert(convert(x,base,10),`*`)
      od;
      x
    end proc:
    select(A031347=2, [$1..1000]); # Robert Israel, Jan 23 2023
  • Mathematica
    t = {}; n = 0; While[Length[t] < 100, n++; s = n; While[s > 10, s = Times @@ IntegerDigits[s]]; If[s == 2, AppendTo[t, n]]]; t (* T. D. Noe, Nov 15 2011 *)
  • PARI
    t(n) = {while(n>9, n=prod(i=1, #n=digits(n), n[i])); n};
    for(n=0, 1e3, if(t(n) == 2, print1(n", "))); \\ Altug Alkan, Oct 19 2015

Extensions

Incorrect formula removed by Martin Renner, Oct 19 2015

A034053 Numbers with multiplicative digital root value 6.

Original entry on oeis.org

6, 16, 23, 28, 32, 44, 47, 48, 61, 68, 74, 82, 84, 86, 116, 123, 128, 132, 144, 147, 148, 161, 168, 174, 182, 184, 186, 213, 218, 224, 227, 228, 231, 238, 242, 244, 246, 264, 267, 272, 276, 281, 282, 283, 288, 289, 298, 312, 321, 328, 344, 347, 368, 374, 377
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Crossrefs

Cf. A031347.
Cf. A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 0-9).

Programs

  • Mathematica
    mdr6Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==6; Select[Range[400],mdr6Q] (* Harvey P. Dale, Jul 14 2024 *)

A034055 Numbers with multiplicative digital root value 8.

Original entry on oeis.org

8, 18, 24, 29, 36, 38, 42, 46, 49, 63, 64, 66, 67, 76, 77, 79, 81, 83, 88, 92, 94, 97, 99, 118, 124, 129, 136, 138, 142, 146, 149, 163, 164, 166, 167, 176, 177, 179, 181, 183, 188, 192, 194, 197, 199, 214, 219, 222, 226, 229, 233, 234, 236, 237, 241, 243, 248
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Crossrefs

Cf. A031347.
Cf. A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 0-9).

Programs

  • Mathematica
    dr8Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==8; Select[ Range[ 250],dr8Q] (* Harvey P. Dale, Jun 10 2011 *)

A034054 Numbers with multiplicative digital root value 7.

Original entry on oeis.org

7, 17, 71, 117, 171, 711, 1117, 1171, 1711, 7111, 11117, 11171, 11711, 17111, 71111, 111117, 111171, 111711, 117111, 171111, 711111, 1111117, 1111171, 1111711, 1117111, 1171111, 1711111, 7111111, 11111117, 11111171, 11111711, 11117111
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Numbers with one 7, and zero or more 1s. - Daniel Forgues, Oct 09 2011

Crossrefs

Cf. A031347.
Cf. A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 0-9).

Programs

  • Mathematica
    Sort[Flatten[Table[FromDigits/@Permutations[Join[{7},PadRight[{},n,1]]],{n,0,10}]]] (* Harvey P. Dale, Jul 20 2015 *)
  • PARI
    t(k)=while(k>9, k=prod(i=1, #k=digits(k), k[i])); k
    for(n=1, 1e8, if(t(n) == 7, print1(n, ", "))); \\ Altug Alkan, Oct 22 2015

Formula

There are n(n+1)/2 elements up to 10^n, so a(n) is about 10^sqrt(2n).

A034050 Numbers with multiplicative digital root value 3.

Original entry on oeis.org

3, 13, 31, 113, 131, 311, 1113, 1131, 1311, 3111, 11113, 11131, 11311, 13111, 31111, 111113, 111131, 111311, 113111, 131111, 311111, 1111113, 1111131, 1111311, 1113111, 1131111, 1311111, 3111111, 11111113, 11111131, 11111311, 11113111
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Numbers with one 3, and zero or more 1s. - Daniel Forgues, Oct 09 2011

Crossrefs

Cf. A031347.
Cf. A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 0-9).

Programs

  • Maple
    seq(seq((10^m-1)/9 + 2*10^j,j=0..m-1),m=1..10); # Robert Israel, Sep 27 2016
  • Mathematica
    Sort[Flatten[Table[FromDigits/@Permutations[Join[{3},PadRight[{},n,1]]],{n,0,8}]]] (* Harvey P. Dale, Jul 16 2012 *)
  • Python
    # through 8-digit terms
    print([int("1"*(d-i)+"3"+"1"*i) for d in range(8) for i in range(d+1)]) # Michael S. Branicky, Mar 13 2021

Formula

There are n(n+1)/2 members up to 10^n, so a(n) is about 10^sqrt(2n).
a(m*(m-1)/2+j+1) = (10^m-1)/9 + 2*10^j for 0 <= j < m. - Robert Israel, Sep 27 2016

A034056 Numbers with multiplicative digital root value 9.

Original entry on oeis.org

9, 19, 33, 91, 119, 133, 191, 313, 331, 911, 1119, 1133, 1191, 1313, 1331, 1911, 3113, 3131, 3311, 9111, 11119, 11133, 11191, 11313, 11331, 11911, 13113, 13131, 13311, 19111, 31113, 31131, 31311, 33111, 91111, 111119, 111133, 111191, 111313, 111331
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

Numbers with one 9 or two 3s, and zero or more 1s. - Daniel Forgues, Oct 09 2011

Crossrefs

Cf. A031347.
Cf. A034048, A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 0-9).

Programs

  • Mathematica
    Module[{nn=6,ne,te},ne=Union[FromDigits/@Flatten[Permutations/@Table[PadRight[{9},n,1],{n,nn}],1]];te=Rest[Union[FromDigits/@ Flatten[ Permutations/@Table[PadRight[{3,3},n,1],{n,nn}],1]]];Join[ne,te]]//Sort (* Harvey P. Dale, Apr 14 2025 *)

Formula

There are n(n+1)(n+2)/6 elements up to 10^n, so a(n) is about 10^sqrt(6n).

A028843 Numbers whose iterated product of digits is a prime.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 21, 26, 31, 34, 35, 37, 43, 51, 53, 57, 62, 71, 73, 75, 112, 113, 115, 117, 121, 126, 131, 134, 135, 137, 143, 151, 153, 157, 162, 171, 173, 175, 211, 216, 223, 232, 261, 278, 279, 287, 297, 299, 311, 314, 315, 317, 322, 341, 351, 355
Offset: 1

Views

Author

Keywords

Examples

			For 53, the product of digits is 5 * 3 = 15, iterated to 1 * 5 = 5, which is a prime, so 53 is in the sequence.
For 54, the product of digits is 5 * 4 = 20, iterated to 2 * 0 = 0, which is not prime, so 54 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    iterDigitProd[n_] := NestWhile[Times@@IntegerDigits[#] &, n, # > 9 &]; Select[Range[355], PrimeQ[iterDigitProd[#]] &] (* Jayanta Basu, Jun 02 2013 *)
  • Scala
    def iterDigitProd(n: Int): Int = n.toString.length match {
      case 1 => n
      case  => iterDigitProd(n.toString.toCharArray.map( - 48).scanRight(1)( * ).head)
    }
    (1 to 400).filter(n => List(2, 3, 5, 7).contains(iterDigitProd(n))) // Alonso del Arte, Apr 11 2020

Extensions

More terms from Patrick De Geest, Jun 15 1999
Corrected by Franklin T. Adams-Watters, Jan 17 2007

A350180 Numbers of multiplicative persistence 1 which are themselves the product of digits of a number.

Original entry on oeis.org

10, 12, 14, 15, 16, 18, 20, 21, 24, 30, 32, 40, 42, 50, 60, 70, 80, 81, 90, 100, 105, 108, 112, 120, 140, 150, 160, 180, 200, 210, 240, 250, 270, 280, 300, 320, 350, 360, 400, 405, 420, 450, 480, 490, 500, 504, 540, 560, 600, 630, 640, 700, 720, 750, 800
Offset: 1

Views

Author

Daniel Mondot, Dec 18 2021

Keywords

Comments

The multiplicative persistence of a number mp(n) is the number of times the product of digits function p(n) must be applied to reach a single digit, i.e., A031346(n).
The product of digits function partitions all numbers into equivalence classes. There is a one-to-one correspondence between values in this sequence and equivalence classes of numbers with multiplicative persistence 2.
There are infinitely many numbers with mp of 1 to 11, but the classes of numbers (p(n)) are postulated to be finite for subsequent sequences A350181..., but not for this sequence (where mp(p(n)) = 1). That is because there are infinitely many numbers that include both an even digit (2, 4, 6 or 8), a 5 and no 0. For these numbers n, p(n) will include a zero and p(p(n)) will be 0.
Equivalently: This sequence contains all numbers A007954(k) such that A031346(k) = 2, and they are the numbers k in A002473 such that A031346(k) = 1.
Or, they factor into powers of 2, 3, 5 and 7 exclusively and p(n) goes to a single digit in 1 step.

Examples

			10 is in this sequence because:
- 10 goes to a single digit in 1 step: p(10) = 0.
- 25, 52, 125, 152, 215, 512, 251, 521, 1125, 1152, 1215, 1512, 1251, 1521, 2115, 5112, 2511, 5211, etc. all lead to 10, i.e., p(25)=10, p(52)=10, etc.
Some of these (25, 125, 512, 1125, 1152, 1215, 1512) are in the next layer of classes, A350181, and the rest are not.
12 is in this sequence because:
- 12 goes to a single digit in 1 step: p(12) = 2.
- 12, 21, 112, 211, 121, 11112, 11211, etc. all lead to 12.
(12, 21 and 112 are in the next layer of classes, A350181, but the rest are not)
14 is in this sequence because:
- 14 goes to a single digit in 1 step: p(14) = 4.
- 27, 72, 127, 172, 217, 712, 271, 721, 12111711, etc. all lead to 14.
(27 and 72 are in the next layer of classes, A350181, the rest are not).
		

Crossrefs

Intersection of A002473 and A046510
Cf. A003001 (smallest number with multiplicative persistence n), A031346 (multiplicative persistence), A031347 (multiplicative digital root), A046510 (all numbers with mp of 1).
Cf. A350181, A350182, A350183, A350184, A350185, A350186, A350187 (numbers with mp 2 to 10 that are themselves 7-smooth numbers).

Programs

  • PARI
    mp(n)={my(k=0); while(n>=10, k++; n=vecprod(digits(n))); k}
    isparent(n)={my(m=0); while(m<>n, m=n; n/=gcd(n,2*3*5*7)); n==1}
    isok(n)={mp(n)==1 && isparent(n)} \\ Andrew Howroyd, Dec 20 2021

A263473 Total number of positive integers < 10^n with multiplicative digital root value 5.

Original entry on oeis.org

1, 7, 40, 172, 607, 2073, 7414, 26070, 84099, 243529, 636130, 1518166, 3354325, 6940831, 13579716, 25318372, 45270813, 78039555, 130259668, 211289368, 334074499, 516217405, 781284010, 1160386410, 1694081935, 2434633461, 3448679742, 4820368690, 6655010857
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263479.

Crossrefs

Programs

  • Mathematica
    lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 5 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 5, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263470(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + a(n) + A263474(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).
From Chai Wah Wu, Apr 17 2024: (Start)
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 10.
G.f.: x*(-235*x^7 + 205*x^6 + 161*x^5 + 57*x^4 - 33*x^3 + 15*x^2 - 3*x + 1)/(x - 1)^10. (End)

Extensions

a(9)-a(29) from Hiroaki Yamanouchi, Oct 25 2015
Previous Showing 11-20 of 68 results. Next